Deux nouveaux systèmes laser UV à haute résolution accordables pour la mesure précise de sections efficaces d'absorption de l'ozone à 308 nm

Journées de Spectroscopie Moléculaire Grenoble, 10-12 mars 2025

Présenté par Coline MAHOB le 11/03/2025

Sommaire

I. Introduction

- A. Problématique
- B. Projet

I. Système 1

- A. Caractéristiques
- B. Alignement
- C. SFG avec un BBO
- D. UV & perspectives

I. Système 2

- A. Amplification de la puissance
- B. SFG avec un PPLN
- C. Cavité de doublage

I. Conclusion

I . Introduction	II . Système 1	III . Système 2	V . Conclusion
 Raisons d'améliorer la précis Besoin de données fiable modèles Incertitudes dans les me S'aligner sur les recomments 	ion des mesures de l'ozone es pour la surveillance et les esures actuelles handations de l'ACSO	10 ⁻¹⁷ 10 ⁻¹⁸ 5 10 ⁻¹⁹	
 Recommandations Améliorer la précision de Réduire les incertitudes Assurer la traçabilité et la 	es valeurs de référence au pourcent. a cohérence des données	10 ⁻²⁰ 10 ⁻²¹ 10 ⁻²² 10 ⁻²²	
Membres du projet Alpha-03		300 400 5	500 600 700 800 900 1000 1100 vacuum wavelength $\lambda_{ m vac}$ / nm
Observatoire PSL 🗷 🕅 🏹	SCIENCES SORBONNE UNIVERSITÉ		
CHAMPAGNE ARDENNE	PARIS NORD anr [®]		

Hodges et al. (2019). DOI: 10.1088/1681-7575/ab0bdd Janssen et al. (2018). DOI: 10.5194/amt-11-1707-2018

I . Introduction	II . Système 1	III . Système 2	V . Conclusion

Objectif : Mesurer les sections efficaces de l'ozone

Technique : Mesures d'absorption dans l'UV

Composants Clés :

- Source UV : Développement d'une source UV pour mesures
- Cellule en Quartz : Contient de l'ozone produit en laboratoire, Environnement à température contrôlée

Résultats attendus : Mesures précises des sections efficaces d'ozone

I . Introduction	II . Système 1	III . Système 2	V . Conclusion

Objectif : Mesurer les sections efficaces de l'ozone

Technique : Mesures d'absorption dans l'UV

Composants Clés :

- Source UV : Développement d'une source UV pour mesures
- Cellule en Quartz : Contient de l'ozone produit en laboratoire, Environnement à température contrôlée

Résultats attendus : Mesures précises des sections efficaces d'ozone

-	.	
	Introd	luction
·	Introt	iu ction

II . Système 1

Brewer	Dobson	Strat. Lidar	Trop. Lidar
303.2 nm	305.5 nm	308 nm	289 nm
306.3 nm	308.8 nm	355 nm	316 nm
310.0 nm	311.45 nm		
313.5 nm	317.6 nm		
316.8 nm			
320.0 nm			

III . Système 2

Brewer

Dobson

Hodges et al. (2019). DOI: 10.1088/1681-7575/ab0bdd Janssen et al. (2018). DOI: 10.5194/amt-11-1707-2018

V. Conclusion

LIDAR

I . Introduction	II . Système 1	III . Système 2	V . Conclusion
	Développement et stabilisat	t de la source UV ion du signal	

Système adapté au LIDAR stratosphérique → gamme de 307.8 à 308.2 nm

Mesures spectroscopiques plus larges → gamme de 308 à 318 nm

I . Introduction	II . Système 1		III . Système 2		V . Conclusion	
Tunable CW source 1014 nm - 1022 nm	Dm $\omega_1 + \omega_2 = \omega_3$ BBO				Laboratorie Photonique Numérique & Nariosciences	LPP Laboratoire d Physique des La
	Plage d'accor	rdabilité de la	2	IR/nm	λ UV/nm	
	Diode	laser:	min	1014.00	→ 307.67	
	- ////		max	1022.00	→ 308.42	
				c un laser bleu	à 441.69 nm	
	Puissance d'amplif	e en sortie ser icateur : d'	0,29 0,28 0,27 0,26 0,25 0 20	40 60	80 100 120	140
				Temps (h)		

w78

I . Introduction	II . Système 1	III . Système 2	V . Conclusion

Sum Frequency Generation (SFG) :

$$\Gamma_{SFG} = \frac{P_3}{P_1 P_2} \longrightarrow P_3 = \frac{\Gamma_{SFG} P_1 P_2}{P_1 P_2}$$

Partie II.B : Alignement

Partie II.B : Alignement

Zondy et al. (1997) DOI: 10.1364/josab.14.002481

Wavelength (nm)

I . Introduction	II . Système 1	III . Système 2	V . Conclusion

En résumé

- Source UV accordable stabilisée en longueur d'onde
- Gamme de la source : 307.8 nm à 308.2 nm
- Résolution : 0.002 nm
- Puissance : 3.7 µW

Système adapté au LIDAR stratosphérique

→ gamme de 307.8 à 308.2 nm

Mesures spectroscopiques plus larges → gamme de 308 à 318 nm

I. Introduction II . S	Système 1	III . Système	e 2	V . Conclusion
	Développement et stabilisatio	de la source UV on du signal		

Système adapté au LIDAR stratosphérique → gamme de 307.8 à 308.2 nm

Mesures spectroscopiques plus larges → gamme de 308 à 318 nm

Power characterization of MOPA system at 1.5 µm

Power characterization of MOPA system at 1 µm

I . Introduction	II . Système 1	III . Système 2	V . Conclusion

Merci pour votre attention

	Système 1	Système 2
Gamme	307.7 nm - 308.4 nm	308.2 nm - 318.9 nm
Puissance	3.5 μW	50 mW
Stabilité en longueur d'onde	~ 10 ⁻⁴ nm	In progress ~10 ⁻⁴ nm
Stabilité en intensité	In progress ~10 ⁻³ (stabilisation de l'IR)	In progress stabilisation de l'UV

Prochaines étapes

- Stabilisation en longueur d'onde du système 2
- Stabilisation en intensité
- Mise en place de la cellule monitoré en température (-80° à 30°)
- Mesures des sections efficaces

