

Temperature dependence of the spectroscopic parameters for the magnetic dipole transitions in the 1.27 μ m O₂ band

<u>Joscha Klemm</u>, Alain Campargue, Hélène Fleurbaey, Samir Kassi, Daniele Romanini, Didier Mondelain

Context: traditional use of 0.76µm band

Column-averaged mole fraction XCO₂

$$XCO_2 = \frac{CO_2^{col}}{O_2^{col} / 0.2095}$$

0.76 μ m: O₂ A-band ($b^{1}\Sigma_{g}^{+}$ (v=0) $-X^{3}\Sigma_{g}^{-}$ (v=0))

Well-established : used in SCIAMACHY, OCO-2, TCCON, MicroCarb

But drawbacks:

- Largely saturated

- Fairly far from the 1.6 μ m band of CO₂

MicroCarb is a test mission: both bands will be used and compared

1.27 μ m: O₂ *a*-band ($a^{1}\Delta_{g}(v=0) - X^{3}\Sigma_{g}^{-}(v=0)$)

Advantages: weaker & closer to 1.6 µm

But: intense dayglow emission Now well modelled by Sun et al. in GRL (2018)

The CRDS technique

CRDS set-up

Comb coherence transfer approach

Direct coherence transfer of the comb tooth (low phase noise laser)

- RF locked comb (30 to 50 kHz)

Advantages:

- Efficient injection of the HF cavity (2 kHz)
- Tuning agility

The 1.27 μ m O₂-band

Measured 55 transitions depicted in red Dry air with 1% of Argon Temperature depency: 3 temperatures (250, 275, 333 K) At each Temperature: 5 pressures (50, 100, 250, 500, 750 Torr)

P(9)P(9) transition @ 253 K

Example for fitting of the measured data

MATS fitting program from NIST

Profile: qSDNG (+ LM) Globally fitted param.:

 $V_0, \gamma_{\rm air}, \delta_{\rm air}, a_{\rm w}, a_{\rm s}, \beta, \zeta$

Param. fitted for each spectrum: *S* + base line

Std. Dev.: 1.11x10⁻¹⁰ to 7.69x10⁻¹¹ cm⁻¹ QF: 7062 – 13712 -> High S/N ratio

List of line shape parameters

 Line-shape parameters and their temperature dependence determined for 55 transitions from high S/N CRDS spectra with reduced uncertainties

Table 1. Spectroscopic parameters obtained at 296 K for the transitions studied in this work. A <u>gSDNG</u> profile is used in the multi-spectrum fit procedure. One-sigma uncertainties are given in parenthesis in the unit of the last digit. Here, a_w and a_s correspond to $\gamma_{2air}/\gamma_{0air}$ and $\delta_{2air}/\delta_{0air}$, respectively. v_0 values are given in cm⁻¹; S_0 values are in 10^{27} cm/molecule; γ_{0air} , δ_{0air} , δ values are given in 10^{-3} cm⁻¹atm⁻¹; δ' values are given in 10^{-6} cm⁻¹atm⁻¹K⁻¹ and ζ values are given in 10^{-3} atm⁻¹.

	Vo ^{a,d}	So ^{b,d}	Y 0air	n y0air	$\boldsymbol{\delta}_{0air}$	8	в	n _β	gw(×10 ³)	n _{Y2air}	as	δ' 2	ζ	01
O(25)P(24)	7732.859612	1.298	36.96(5)	0.601(14)	-2.70(5)	8.4(14)	5.10(20)	0.17(46)	107.00(300)	1.02(32)				10
O(19)P(18)	7772.029465	6.146	43.14(2)	0.689(4)	-2.57(2)	8.5(5)	3.49(2)	1.38(6)	88.70(30)	0.28(3)				
O(15)P(14)	7797.419002	12.030	47.10(2)	0.738(4)	-2.46(1)	8.6(3)	2.98(4)	1.70(10)	80.30(20)	0.11(3)	-0.085(2)	0.12(19)		
P(25)P(25)	7798.845866	2.686	36.08(2)	0.557(5)	-2.64(1)	8.4(1)	4.90(28)	2.05(50)	111.30(300)	0.15(27)	-0.057(16)			
P(25)Q(24)	7800.633628	3.065	36.18(1)	0.562(3)	-2.54(1)	8.0(1)	3.82(7)	2.08(15)	111.70(10)	0.22(1)	-0.062(1)			
P(23)P(23)	7806.421861	4.838	38.21(1)	0.605(3)	-2.54(1)	8.2(2)	4.43(8)	1.56(16)	103.70(10)	0.33(1)	-0.061(11)			
P(23)Q(22)	7808.227444	5.570	38.22(3)	0.604(7)	-2.45(1)	7.9(1)	3.58(10)	1.99(25)	102.00(100)	0.16(9)	-0.044(10)			
O(13)P(12)	7809.894152	14.894	48.95(5)	0.756(8)	-2.37(1)	8.4(4)	2.65(10)	1.70(30)	76.50(90)	0.08(10)	-0.116(1)	-0.43(5)		
P(19)P(19)	7821.110627	12.831	42.18(3)	0.682(6)	-2.39(1)	7.6(1)	3.89(3)	1.44(6)	90.40(40)	0.21(4)	-0.050(7)	3.36(111)		
P(19)Q(18)	7822.952614	15.133	42.23(2)	0.687(3)	-2.31(1)	8.1(4)	3.01(2)	1.40(4)	90.40(10)	0.28(1)	-0.061(2)	-1.00(30)		
O(9)P(8)	7834.401703	16.346	52.47(5)	0.773(7)	-2.02(8)	6.8(2)	2.20(10)	2.40(40)	71.00(80)	0.00(9)	-0.130(70)		2.40 ^e	1.08 ^e
P(15)P(15)	7835.182403	25.740	45.88(2)	0.738(4)	-2.23(1)	8.7(1)	3.32(5)	1.45(13)	79.60(60)	0.30(6)	-0.097(12)	-2.58(113)		
P(15)Q(14)	7837.062483	31.436	45.99(4)	0.728(7)	-2.20(1)	7.4(1)	2.36(9)	2.36(31)	81.50(70)	0.04(7)	-0.062(5)	0.78(69)		
P(11)P(11)	7848.636477	36.799	49.26(3)	0.767(6)	-2.07(1)	7.1(4)	3.03(6)	1.30(20)	71.80(50)	0.14(6)	-0.113(3)	0.56(23)		
P(11)Q(10)	7850.558223	47.968	49.25(3)	0.767(5)	-2.05(2)	6.8(6)	2.42(5)	1.70(20)	71.90(50)	0.07(5)	-0.550(9)	0.39(146)		
P(9)P(9)	7855.131201	37.484	50.91(4)	0.771(7)	-1.90(1)	6.4(4)	2.59(9)	1.60(30)	73.10(80)	0.08(9)	-0.154(7)	0.44(40)		
O(5)P(4)	7858.323962	7.248	58.30(4)	0.784(5)	-1.46(1)	5.9(2)	2.56(3)	0.01(8)	69.60(80)	0.73(10)	-0.236(1)	-0.54(3)		
P(7)Q(6)	7863.443990	49.385	52.75(1)	0.766(1)	-1.84(3)	6.1(10)	2.25(1)	1.52(4)	73.40(70)	0.21(8)	-0.035(21)	1.00(510)	0.76 ^e	1.29 ^e

Example of temp. dep for the O15P14 transition for air-broadening coefficient γ_{air}

 $\gamma_{air}(T) = \gamma_{air}(296 \text{ K})(296/T) n_{\gamma air}$

HITRAN2020 values of $\gamma_{0air} = \gamma_{air}(296 \text{ K})$

 $\gamma_{air}(T) = \gamma_{air}(296 \text{ K})(296/T) n_{\gamma air}$

N' is the total orbital angular momentum of the upper state

Almost no branch dependence

Comparison of γ_{0air} to Fleurbaey2021, Tran2020 and HITRAN2020

 $\gamma_{air}(T) = \gamma_{air}(296 \text{ K})(296/T) n_{\gamma air}$

=> Mutual validation of the datasets with Fleurbaey2021 and Tran2020 at the 3 to 4‰ level (=>N'=27)

Comparison of *n*_{γair} of this work to HITRAN2020 and CMDS

 $\gamma_{air}(T) = \gamma_{air}(296 \text{ K})(296/T) n_{\gamma air}$

Classic molecular dynamic simulations (CMDS) done by Ha Tran and published in Tran2019

Large discrepancy compaired to HITRAN and CMDS Example of temp. dep for the O(15)P(14) transition for air-pressure shift coefficient δ_{air} $\delta_{air}(T) = \delta(296) + \delta'(T - 296)$

O(15)P(14)

HITRAN2020 values of $\delta_{0air} = \delta(296 \text{ K})$

A clear branch dependence is observed

Comparison of δ_{0air} to Fleurbaey2021, Tran2020 and HITRAN2020 $\delta_{air}(T) = (\delta(296) + \delta')(T)$

296)

(1) (1)

$$\begin{split} &\delta_{0\text{air_Tran2020}} - \delta_{0\text{air_TW}} = -2.0 \pm 11.1 \times 10^{-5} \text{ cm}^{-1} \text{ atm}^{-1} \\ &\delta_{0\text{air_Fleurbaey2021}} - \delta_{0\text{air_TW}} = 0.5 \pm 8.1 \times 10^{-5} \text{ cm}^{-1} \text{ atm}^{-1} \end{split}$$

Consistency of the three datasets at the 1×10⁻⁴ cm ⁻¹atm⁻¹ level

Temp. dep. coefficient of air-pressure shift of our measurements δ '

 $\delta_{air}(T) = \delta(296) + \delta'(T - 296)$

Summary and perspectives

- Results show good agreement with literature and high quality of the data(*i.e.* 3‰ unc. on γ_{0air})
- First time measured and reported values for temperature dependency of the line shape parameters
- HITRAN 2024 contribution:
 - Line shape parameters for reference Temperature at 296 K (together with Fleurbaey2021)
 - Temp. dep.
 - nyair and δ'
 - β , aw and as
 - n β , n δ 2air, n γ 2air
 - Line-mixing parameter

Merci beau coup Didier and LAME Team!

