



# Spectroscopie moléculaire THz haute

# précision par photo-mélange à 1550 nm

Loïc LECHEVALLIER, Samir KASSI, LIPhy, Grenoble, France







## THz domain





V. V. Ilyushin *et al.*, « Rotational and rovibrational spectroscopy of CD<sub>3</sub> OH with an account of CD<sub>3</sub> OH toward IRAS 16293–2422 », *Astron. Astrophys.*, vol. 658, p. A127, févr. 2022, doi: 10.1051/0004-6361/202142326.
A. D'Arco *et al.*, « Terahertz continuous wave spectroscopy: a portable advanced method for atmospheric gas sensing », *Opt. Express*, vol. 30, nº 11, p. 19005, mai 2022, doi: 10.1364/OE.456022.
A. Cuisset *et al.*, « Terahertz Rotational Spectroscopy of Greenhouse Gases Using Long Interaction Path-Lengths », *Appl. Sci.*, vol. 11, nº 3, p. 1229, janv. 2021, doi: 10.3390/app11031229.





Easily tunable by changing temperature or current



[1] P. Laurent, A. Clairon and C. Breant, "Frequency noise analysis of optically selflocked diode lasers," in IEEE Journal of Quantum Electronics, vol. 25, no. 6, pp. 1131-1142, June 1989

#### Reduction in the emission linewidth of **D**istributed **F**eed **B**ack laser from MHz to **Hz** level







## **Fine tuning for spectroscopy**





#### **THz source in practice**







#### Absolute frequency measurement



#### Performances

**Purity & Stability < Hz** 

[5]L Djevahirdjian et al Nature Communications nov. 2023

## Study of absorption profile : H<sub>2</sub>O

Now

Metrologic & Quantitative measurement

#### H<sub>2</sub>O

Already studied<sup>[6][7][8][9]</sup>

• Comparison

11/03/2025

- Improvement of calculated parameters<sup>[10]</sup>
- Not given (delta self)

Pressure broadening (gamma) and shift (delta)

[6] G. Yu. Golubiatnikov, Journal of Quantitative Spectroscopy and Radiative Transfer, juill. 2008

- [7] V.B. Podobedov, Journal of Quantitative Spectroscopy and Radiative Transfer
- [8] G. Cazzoli, Journal of Quantitative Spectroscopy and Radiative Transfer, juin 2008
- [9] G. Cazzoli,, Journal of Quantitative Spectroscopy and Radiative Transfer, nov. 2008,

[10] R.R. Gamache, (2020) private communication. CRB calculation for different isotopologues of water vapor











## **Pressure dependence**







**Pressure shift** 0.420(9) MHz/mbar

**Position** 1172525. 835(4) MHz

preliminary results





**Pressure shift** 0.420(9) MHz/mbar

**Position** 1172525. 835(4) MHz

**Self-broadening** 9.350(7) MHz/mbar preliminary results



preliminary results





11/03/2025

preliminary results





#### **Results overview : pressure shift**





Literature

[6] G. Yu. Golubiatnikov, Journal of Quantitative Spectroscopy and Radiative Transfer, juill. 2008

[7] V.B. Podobedov, Journal of Quantitative Spectroscopy and Radiative Transfer, 2004

[8] G. Cazzoli, Journal of Quantitative Spectroscopy and Radiative Transfer, juin 2008

[9] G. Cazzoli,, Journal of Quantitative Spectroscopy and Radiative Transfer, nov. 2008,

## **Results overview : pressure shift**







This work
Literature

[6] G. Yu. Golubiatnikov, Journal of Quantitative Spectroscopy and Radiative Transfer, juill. 2008

[7] V.B. Podobedov, Journal of Quantitative Spectroscopy and Radiative Transfer, 2004

[8] G. Cazzoli, Journal of Quantitative Spectroscopy and Radiative Transfer, juin 2008

[9] G. Cazzoli,, Journal of Quantitative Spectroscopy and Radiative Transfer, nov. 2008,

#### No agreement with literature

## **Results overview : self broadening**



[6] G. Yu. Golubiatnikov, Journal of Quantitative Spectroscopy and Radiative Transfer, juill. 2008

[7] V.B. Podobedov, Journal of Quantitative Spectroscopy and Radiative Transfer, 2004

[8] G. Cazzoli, Journal of Quantitative Spectroscopy and Radiative Transfer, juin 2008

[9] G. Cazzoli,, Journal of Quantitative Spectroscopy and Radiative Transfer, nov. 2008,

[10] R.R. Gamache, (2020) private communication. CRB calculation for different isotopologues of water vapor



Loïc LECHEVALLIER

Hitran

## **Results overview : self broadening**



[6] G. Yu. Golubiatnikov, Journal of Quantitative Spectroscopy and Radiative Transfer, juill. 2008

#### [7] V.B. Podobedov, Journal of Quantitative Spectroscopy and Radiative Transfer, 2004

[8] G. Cazzoli, Journal of Quantitative Spectroscopy and Radiative Transfer, juin 2008

[9] G. Cazzoli,, Journal of Quantitative Spectroscopy and Radiative Transfer, nov. 2008,

[10] R.R. Gamache, (2020) private communication. CRB calculation for different isotopologues of water vapor



Loïc LECHEVALLIER

Hitran

#### preliminary results



## **Results overview : self broadening**

[6] G. Yu. Golubiatnikov, Journal of Quantitative Spectroscopy and Radiative Transfer, juill. 2008

[7] V.B. Podobedov, Journal of Quantitative Spectroscopy and Radiative Transfer, 2004

[8] G. Cazzoli, Journal of Quantitative Spectroscopy and Radiative Transfer, juin 2008

[9] G. Cazzoli,, Journal of Quantitative Spectroscopy and Radiative Transfer, nov. 2008,

[10] R.R. Gamache, (2020) private communication. CRB calculation for different isotopologues of water vapor



Loïc LECHEVALLIER

Hitran

#### **Conclusion & perspective**













# Thank you

Question ?

# Annexes

## **Optical feedback technique with DFB laser : Two lasers**





## **Optical feedback technique with DFB laser : Phase control**





## Source performance : purity and stability



[5]L. Djevahirdjian et al Nature Communications nov. 2023



Scan sub-Doppler structure Linewidth ~10 kHz



Spectral purity from

#### Long term Stability over 1 day

Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day Beating 1.96 GHz over one day

#### 1 GHz to 1200 GHz **Hz linewidth** emission

Measure @1.96GHz Drift < Hz in 1 hour Accuracy 200 mHz in 20 minute

#### 11/03/2025





#### **Absorption spectra overview**





#### @100 µbar with Voigt profile fit residual

#### **Absorption spectra overview**





Fit with Voigt profile, residual structure, work in progress...

## **Results overview**





Doppler fixed



## **Experimental position vs HITRAN**

