Accélération contre rovibrations

quand la spectroscopie infra-rouge vient bousculer la géochimie

M. Daëron

- Centre National de la Recherche Scientifique
- Laboratoire des Sciences du Climat et de l'Environnement

Stable vs radiogenic isotopes

electron

proton

neutron

CO₂ atmosphérique

matière organique

– 330 millions d'années

Géochimie des isotopes stables: pourquoi ?

CO₂ atmosphérique

2025

CO₂ atmosphérique

matière organique

– 330 millions d'années

Géochimie des isotopes stables: pourquoi?

CO₂ atmosphérique

2025

IRMS: Isotope Ratio Mass Spectrometry

IRMS: Isotope Ratio Mass Spectrometry

- mesures <u>relatives</u> de précision < 10 ppm
- interférence entre molécules de même masse
 - $m = 44 : {}^{16}O{}^{12}C{}^{16}O{}^{12}$
 - m = 45 : ${}^{16}O{}^{13}C{}^{16}O$ + ${}^{16}O{}^{12}C{}^{17}O$
 - $m = 46 : {}^{16}O^{12}C^{18}O + {}^{16}O^{13}C^{17}O + {}^{17}O^{12}C^{17}O$

Stable isotope quantities of interest for CO₂

$\delta^{13}C + \delta^{18}O$ (since ~1950, $\sigma = 10-50$ ppm)

 $\Delta^{17}O$ (since ~2010, $\sigma \approx 10$ ppm)

 Δ_{47} (since ~2010, $\sigma \approx 10$ ppm)

 Δ_{48} (since ~2020, $\sigma \approx 30$ ppm)

Spectroscopic measurements of isotopic abundances

- Many molecules absorb infra-red photons with quantified energy levels.
- These levels corresponding to transitions between rovibrational modes of excitation.
- Absorbed wavelengths depend on the distribution of mass rather than total molecular mass.

2004

Handbook of Stable Isotope Analytical Techniques, Volume-I © 2004 Elsevier B.V. All rights reserved.

CHAPTER 34

Isotope Ratio Infrared Spectrometry

Erik Kerstel

Center for Isotope Research, Department of Physics, University of Groningen, The Netherlands

Direct measurements in the field $\delta^{13}C, \, \delta^{18}O, \, \delta^{2}H...$

Infrastructure européenne d'observation des gaz à effet de serre

cf présentation d'Axel Wohleber cet après-midi

Faster measurements in the lab

Tunable Infrared Laser Direct Absorption Spectroscopy (TILDAS, Aerodyne)

2022

SCIENCE ADVANCES | RESEARCH RESOURCE

GEOCHEMISTRY

Rapid and precise measurement of carbonate clumped isotopes using laser spectroscopy

Nitzan Yanay¹*, Zhennan Wang¹, David L. Dettman^{1,2}, Jay Quade¹, Katharine W. Huntington³, Andrew J. Schauer³, David D. Nelson⁴, J. Barry McManus⁴, Kaustubh Thirumalai¹, Saburo Sakai⁵,

Carbonate clumped isotope abundance is an important paleothermometer, but measurement is difficult, slow, and subject to cardinal mass (*m/z*) interferences using isotope ratio mass spectrometry (IRMS). Here, we describe an optical spectroscopic measurement of carbonate clumped isotopes. We have adapted a tunable infrared laser differential absorption spectrometer (TILDAS) system to measure the abundances of four CO₂ isotopologues used for clumped isotope thermometry. TILDAS achieves the same precision (0.01‰ SE) as IRMS measurements rapidly (~50 min per carbonate analysis) and using small samples (<2 mg of calcite), without making assumptions about ¹⁷O abundance in the sample. A temperature calibration based on 406 analyses of CO₂ produced by digestion of 51 synthetic carbonates equilibrated at 6° to 1100°C is consistent with results for natural carbonates and previous calibrations. Our system results were indistinguishable from IRMS systems after replicating the InterCarb interlaboratory calibration. Measurement by TILDAS could change the landscape for clumped isotope analysis.

V-Cavity Optical Feedback Cavity Ring-Down Spectroscopy (VCOF-CRDS, LIPhy-LSCE)

ART

Keywords:

RTICLE	INFO
--------	------

Triple oxygen isotope VCOF CRDS Laser spectroscopy

V-Cavity Optical Feedback Cavity Ring-Down Spectroscopy (VCOF-CRDS, LIPhy-LSCE)

Metrological issues Example: 3 different definitions of $\delta^{13}C$

Metrological issues **Example: 3 different definitions of \delta^{13}C**

Metrological issues Example: 3 different definitions of δ¹³C

Metrological issues Example: 3 different definitions of δ^{13} C

Conclusions:

Dialogue between spectroscopists and geochemists is useful and rewarding.

Looming metrological issues

Earth-science applications are demanding but have critical implications for us all.

Earth-science labs will soon need a new generation of engineers & researchers.

Three geochemists comparing the performances of their laser instruments (artistic representation)

Overcome "hard" limits of IRMS? (e.g., Δ_{48} of CO₂)

- IRMS of very rare species is limited by Poisson counting statistics (count N ions $\Rightarrow \sigma \approx N^{1/2}$)
- (thermal stability, optical fringes, saturation effects...)

Even after 80+ years of development, ion sources remain not very efficient

By contrast, precision of infra-red spectroscopy bumps against "soft" limits