

Spectroscopy techniques using frequency-comb : the special case of Dual comb spectroscopy

Sandrine GALTIER, Dr.

Institut Lumière Matière (ILM) – CNRS – Université Claude Bernard Lyon 1

JSM – March, 10, 2025

Spectroscopy techniques using frequency-comb

Partie I: Spectroscopy with combs

- Introduction
- Different techniques of Frequency comb spectroscopy

Partie II: Dual Comb spectroscopy

- Dual Comb Principle
- Dual Comb in the international community
- Extension towards the UV range

Partie III: The Dual Comb experiment at ILM

- Experimental setup
- Results

A Keer-Lens mode-locked frequency comb

Frequency comb spectrometer(S)

Broadband spectroscopy + comb mode resolution + frequency precision

Fluorescence on atomic system

Dispersive element (+Fabry Perot)

- Using a diffraction grating
- Virtually-imaged phasearray (VIPA)
- Vernier spectroscopy

Time domain techniques

- FTS using a Michelson interferometer
- FTS with Dual Comb
- Ramsey-comb spectroscopy
- Other heterodyne measurements (THz)

Lyon

First Cavity-enhanced Frequency-comb spectrocsopy

Frequency comb = bright source + broadband + harmonic generation possible

Resolution 0.03 to 0.07 nm in the UV range

[T. Gherman, D. Romanini, Opt. Express 10, 1033 (2002)]
[G. Méjean, S. Kassi, and D. Romanini – Optics Letters Vol 33 n°11 (2008)]
[Grilli *et al*, Environmental Science & Technology, Vol 26 (2012)]

Mode-locked Cavity enhanced Dual Comb Spectroscopy (ML-CEAS)

Bandwidth between 50 et 100 $\rm cm^{-1}$ depending on the cavity finesse Need of low-dispersion cavity mirrors.

In-situ and Real Time Measurements of IO, BrO, NO2, and H2CO at pptv and ppqv

Lyon

Comb resolution with a Grating-based spectrometer?

> Vernier spectroscopy GHz resolution over 2000 cm^{-1}

[L. Rutkowski and J. Morville, JQSRT , vol 187 (2017)]

[Review: Lu et al, Photonics 2022, 9, 222]

see talk L1_Talk4 Jérôme Morville "Cavity Enhanced Frequency Comb Vernier Spectroscopy d'hydrures métalliques produit par pulvérisation cathodique »

virtually-imaged phasearray (VIPA) spectrometer
 1.2 GHz sampling frequency, at 633nm over 10nm bandwidth.

[S.A. Diddams, L. Hollberg, V. Mbele, Nature 445, 627 (2007)]

- First observation of the OD + CO → DOCO kinetics [B. J. Bjork *et al* Ye, *Science* **354**, 444-448 (2016)]

- Recently 94 MHz resolution, observation of N2, H2, CH4 in a plasma [Sadiek *et al*, Optics Express 32, 26 (2024)]

[Adapted from Review of: Thorpe, M.J and J. Ye Appl. Phys. B 91, 397–414 (2008)]

Frequency comb spectrometer(S)

Broadband spectroscopy + comb mode resolution + frequency precision

Dispersive element (+Fabry Perot)

- Using a diffraction grating
- VIPA
- Vernier spectroscopy

Time domain techniques

- FTS using a Michelson interferometer
- FTS with Dual Comb
- Ramsey-comb spectroscopy
- Other heterodyne measurements

Fourier Transform spectroscopy with Combs

Calc.

1,529 nm

1,530 nm

1,531 nm

Fourier Transform spectroscopy with Combs

[Mandon, J.; Guelachvili, G.; Picqué, N. Nat. Photonics 2009, 3, 99–102] resolution of 1.5 GHz, spanning 80 nm @1.5 μ m (C_2H_2):

+ Enhancement cavity : [Kassi et al, Spectrochimica, Spectrochimica Acta Part A 75 (2010) 142–145] weak b–X transition of $16O_2$ in the atmosphere, at 0.1 cm⁻¹ resolution

Comb resolution with a Fourier-Transform Spectrometer?

[Rutkowski, L et al, J. Quant. Spectrosc. Radiat. Trans 2018, 204, 63–73 (2018)]

subnominal FTS

Resolution of 111 MHz, over 100 cm⁻¹ (CO2 at $1.5\mu m$) [Maslowski, P. *et al.* Phys. Rev. A, 93, 021802. (2016)]

+ Interleaving

-> precision beyond the Voigt profile

The instrumental function is not impacting the adjacent comb modes

 Cavity Ring Down - Fourier transform - Comb spectroscopy -> see talk L1_Talk2 Romain Dubroeucq "Spectroscopie par temps de déclin cavité Fabry Perot par peignes de fréquences »

[Dubroeucq *et al*, Optics Express, vol 3 (2022) + arXiv:2409.09531 (2024)] [Liang et al, Nature, vol 638 (2025)]

Comb resolution with a Fourier-Transform Spectrometer? Dual Comb Spectroscopy

Partie I: Spectroscopy with combs

- Introduction
- Different techniques of Frequency comb spectroscopy

Partie II: Dual Comb spectroscopy

- Dual Comb Principle
- Dual Comb in the international community
- Extension towards the UV range

Partie III: The Dual Comb experiment at ILM

- Experimental setup
- Results

Dual-Comb Spectroscopy – temporal representation

 $\Delta f_{rep} = f_{rep,1} - f_{rep,2}$

The dual-comb methodology spectral domain

« Or how to map optical frequencies into RF frequencies »

The pioneers: MPQ, Nathalie Picqué NIST's group, I.Coddington Laval University, Jérôme Genest

 $\Delta f_{rep} = f_{rep,1} - f_{rep,2}$

The dual-comb methodology spectral domain

« Or how to map optical frequencies into RF frequencies »

The pioneers: MPQ, Nathalie Picqué NIST's group, I.Coddington Laval University, Jérôme Genest

Dual Comb Spectroscopy History

2005: Ammoniac detection around $10\mu m$ (2 KLM free-running TiSa lasers + DFG) [Schliesser and Keilmann, Optics Express Vol 13, 22 (2005)]

2005: 82.6 MHz resolution in the THz domain [Yasui, E. Saneyoshi, and T. Araki, Appl. Phys. Lett. 87, 061101 (2005)]

2006: Vater vapor detection in the THz range (2 KLM TiSa lasers + antenna) [Brown et al, Applied Spectroscopy, Vol 60, n°6 (2006)] Comb resolution in the THz domain: [Yasui *et al*, Appl. Phys. Lett. 88, 241104 (2006)]

2010's: DCS emerging among the IR spectroscopist community

[Coddington, Opt. Lett. **34**(14), 2153–2155 (2009)] [J. Roy, *et al* Opt.Express Vol20, n°20 (2012)] Comb resolved.

2014 -> outside the laboratory

[Rieker et al, Optica, Vol 1, issue 5 (2014)]:

[Bernhardt, B *et al.*. *Nature Photon* **4**, 55–57 (2010).] 4.5GHz resolution, 20nm bandwidth, Yb laser Acétylène C2H2 and Ammoniac NH3

Dual Comb Spectroscopy Architectures and Applications

[from review : Coddington et al. Optica Vol. 3, No. 4 (2016)]

Typically GHz resolution

+ phase correction algorithms to retrieve the comb structure [Walsh *et al* J. Phys. B: At. Mol. Opt. Phys. **58** (2025)]

Typically GHz to MHz resolution

+ phase correction

Phase-locked or mutually coherent by the laser architecture (ex. Part III)

Sub-MHz resolution -> Spectral interleaving possible

Systematic error of **200kHz to 300kHz**, at **3.4** μm and **1.5** μm (Méthane) [Zolot et al, JQSRT, 118, 26-39 (2013)]

-> HITRAN data base improvement

Systematic error of **600kHz at 7.8 µm** (38.4 THz) over 1.2THz (N2O) [Komagata et al, Physical Review Research **5**, 013047 (2023)]

-> HITRAN data base improvement

Lyon

Université Claude Bernard

Lyon

+ Isotopic ratios

Dual Comb Spectroscopy – Spectral ranges

EOM

+ Microresonnators (chip-based): 1.5 μm

Université Claude Bernard

Lyon 1

DCS in the UV and D-UV range – Motivations?

High spectral resolution to explore the full dynamic of fundamental transient effects

(combustion, chemical reaction dynamics at the microsecond time scale)

Absorption line metrology in the UV

broadband and high resolution spectroscopy -> UV congestionned lines

"table-top" synchrotron beamline?

Lyon '

UV – Dual Comb: State of the art

R. Jason Jones' group in Arizona [McCauley *et al*, Optica, Vol. 11, No. 4, April 2024] (2 Yb fiber comb + **3rd harmonic** - Fel and Fell absorption lines – 2THz wide) N. Picqué's group at MPQ-Garching [Xu *et al*, Nature, vol°627, 2024] (Erb fiber + EOM combs +**2X SHG** - Cesium – 50GHz wide)

S. Diddams' group in Colorado [Chang et al, Optics Letters, vol°49, 7, 2024] (Erb fiber comb + PPNL for 5th harmonic)

L. Vodopyanov's group in Florida [Muraviev et al, Optica, vol 11, 11 2024] (2 KLM laser + HHG, 7 harmonic)

B. Bernhardt's group in Graz [Fürst et al, Optica vol n°11, 2024] (2 Yb sources in one, THG + broadening, 50GHz resolution, 37.5 THz wide)

Comb resolution with a Fourier-Transform Spectrometer? Dual Comb Spectroscopy

Partie I: Spectroscopy with combs

- Introduction
- Different techniques of Frequency comb spectroscopy

Partie II: Dual Comb spectroscopy

- Dual Comb Principle
- Dual Comb in the international community
- Extension towards the UV range

Partie III: The Dual Comb experiment at ILM

- Experimental setup
- Results

UV-DCS, with a ... TiSa laser !

- Sufficiently low optical phase noise 0.11 rad (1 kHz : 50 MHz) [Sutyrin et al, Optical Engineering, vol n°12, 2014]
 - + Low harmonics generation (SHG THG) to reach the UV range
 - -> coherent UV-comb pulses
- Sufficient power in the UV range (>10 mW) -> OK remote sensing
- Broad and versatile spectral range (>10nm)
 -> multispecies monitoring

[S. Galtier, C. Pivard, P. Rairoux. Remote Sensing, 12(20), 2020]

Home-made bidirectional ring laser cavity

OC: output coupler BS: beam splitter B1 4: prisms for dispersion component

P1-4: prisms for dispersion compensation

[Ideguchi *et al*, Optica, vol 3 n°7,2016], [Garduno-Mejia *et al*, Optic Comm, vol n°171, 1999], [Bartels *et al*, Opt. Lett., vol n°24, 1999], [Fortier *et al*, Opt. Lett., vol n°31, 2006], [Pelouch *et al*, Opt. Lett., vol n°17, 1992],

Home-made bidirectional ring laser cavity

Clément Pivard, Dr

[Clément Pivard. *Development of a bidirectional Dual Comb laser source towards atmospheric trace gases monitoring*. PhD thesis, Université Lyon 1 Claude Bernard - Institut Lumière Matière (ILM), defense date: december, 15, 2022.]

Δf_{rep} ?? Asynchronous operation?

How to variate Δf_{rep} ? Crystal translation (µm) / Lens translation (µm) / Prism translation (µm) / Mirror adjustment (µm)

Source of Δf_{rep} ?

Correction of the Non-linear Schrodinger equation :

Self-steepening effect: group velocity dependance as function of pulse duration and energy

Predicted group velocity change: $\approx 0.1(2) fs/nJ$ [Sander *et al*, Optics Express Vol 18 n°5 (2010)]

TiSa crystal

From the green pump laser

Measurement Δf_{rep} versus differential intracavity energy on the ILM-BDTiSa

Coef_dir = 0.25(11) fs/nJ ✓

Behaviour as function of Δf_{rep}

How to variate Δf_{rep} ? Crystal translation (µm) / Lens translation (µm) / Prism translation (µm) / Mirror adjustment (µm)

Mutual coherence of f_{rep1} and f_{rep2}

 f_{rep1} , f_{rep2} and Δf_{rep} measurements using a frequency counter FCA3000 TektronixTM

Di-oxygene DCS measurement

Schematic setup for O₂ DCS spectroscopy

DCS signal: temporal trace and retrieved spectrum

RF frequencies towards optical frequencies

$$v_{opt} \approx \frac{f_{rep}}{\Delta f_{rep}} \times \left(k f_{rep} \pm (v_{RF} - \Delta f_{CEO}) \right)$$

Di-oxygene DCS measurement

 $b^{1}\Sigma_{g}^{+} - X_{3}\Sigma_{g}^{-}$ electronic transitions of oxygen with ambient linewidth of 1.5GHz \rightarrow GHz resolution level \rightarrow Asymmetric lineshape under investigation

[S. Galtier, C. Pivard, J. Morville and P. Rairoux '*High-resolution dual comb spectroscopy using a free-running, bidirectional ring titanium sapphire laser*.' Opt. Express, **30** n°12, 21148-21158 (2022)]

Firsts results on UV -DCS

Abel Feuvrier (PhD)

[Abel Feuvrier *et al* –EOSAM October 2023 - EPJ Web of Conferences **287**, 07019 (2023)]

ANR UV-ATMOCOS

Université Claude Bernard

Lyon 1

Cs measurement

Schematic setup using a Cs vapor cell

Retrieved UV spectra from FFT of a 2.5ms window around the IGM centerburst. **Singe shot** interferogram.

2 resonances of ¹³³Cs - atomic linewidth \approx 1GHz. 6S_{1/2}-8P_{3/2} @ 387.615 nm 6S_{1/2}-8P_{1/2} @ 388.861 nm -> Cs lines to assess the resolution of the spectrometer ?

-> Towards quantitative transmission measurement using a NO2 spectral lines in a vacuum gas chamber.

Université Claude Bernard

Lyon

Conclusion and perspectives Frequency comb spectroscopy

- Frequency comb spectroscopy

Variety of spectrometers: Speed - accuracy/precision - Spectral coverage

- Dual Comb in the UV range:

The free-running bidirectional KLM TiSa laser at ILM

- Δf_{rep} observed from 0 to 450 Hz measurement of **resolved molecular lines.**
- UV Spectroscopic measurements with pprox 10mW total power

- How to improve the sensitivity:

Averaging protocols: a posteriori (computing) or real-time correction protocols. Address the asymmetrical line shapes.

- Field-deployable instrument?
- Frequency comb spectroscopy at other spectral ranges ?
 The case of Ramsey-Comb spectroscopy (XUV)

Remerciements

Members of the Dual Comb Team at ILM (Lyon)

Abel Feuvrier (PhD), Dat Nguyen(PostDoc), Sandrine Galtier and Patrick Rairoux.

<u>Abel Feuvrier (PhD)</u>

Dat Nguyen (PostDoc)

Collaborators: Jérôme Morville (ILM), Jesus GardunoMejia and Catalina Karolina (Institute of New Mexico)

Thanks to the ATMOS team of ILM

Université Claude Bernard (

