Experimental and theoretical studies of lineshape parameters to address the spectroscopic challenges of planetary atmospheres

Bastien Vispoel

Laboratory Lasers and Spectroscopies University of Namur, Belgium

www.unamur.be

Remote sensing for planetary atmospheres

Spectroscopic challenges

Measurement campaign: weeks, months Spectra analysis: weeks, months → Dozens or hundreds of lines

Once interaction potential is known \rightarrow Computations of thousands of lines

Ex: H_2O for VenSpec-H (4 spectral regions) \rightarrow 5760 lines in more than 50 bands

- Temperature dependence
- Experimental difficulties

Methodology

QCL spectrometer

- 1. Quantum Cascade Laser
- 2. Parabolic mirror
- 3. Beam splitter
- 4. Absorption cells
- 5. Detectors
- 6. Confocal étalon
- 7. Chopper

Characteristics

- •High-resolution (5 x 10⁻⁵ cm⁻¹)
- •Excellent SNR (>2000)
- •Spectral range (0.1 2 cm⁻¹)

T. Roland, Master thesis, University of Namur (2022)

B. Vispoel et al., JQSRT, 328, 109150 (2024)

www.unamur.be

QCL spectrometer

B. Vispoel et al., JQSRT, 328, 109150 (2024)

Dual comb spectrometer

Dual comb spectrometer

Experimental line profile fits

Diode-laser experimental results

 CH_4 - N_2 in the v_3 band

Vispoel, PhD thesis (2016)

www.unamur.be

Temperature dependence

Temperature dependence

$$\gamma(T) = \gamma(T_0) \left[\frac{T_0}{T}\right]^n \qquad \qquad \delta(T) = \delta(T_0) + \delta' \left(T - T_0\right)$$

Double Power Law

$$\gamma(T) = c_1 \left[\frac{T_0}{T} \right]^{n_1} + c_2 \left[\frac{T_0}{T} \right]^{n_2}$$

- Physic's based
- Large range of temperature
- Works for half-width, line shift and their speed dependence
- Allow change of sign

Gamache and Vispoel, JQSRT, 217, 440 (2018)

Temperature dependence

Temperature dependence of collisional line shape parameters

Semi-classical Complex Robert-Bonamy-Ma formalism

Why semi-classical model?

- Accuracy
- Computation resources

Semi-classical Complex Robert-Bonamy-Ma formalism

Semi-classical Complex Robert-Bonamy-Ma formalism

Semi-classical approach to line shape

$$(\gamma - i\delta)_{f \leftarrow i} = \frac{n_2}{2\pi c} \int_0^{+\infty} v f(v) \, dv \int_0^{+\infty} 2\pi b \, db$$
$$\times \left[1 - e^{-i\langle S_1 + \operatorname{Im}\{S_2\}\rangle_{J_2}} e^{\langle \operatorname{Re}\{S_2\}\rangle_{J_2}} \right]$$

Classical mechanics

- Trajectory
- Hamilton's equations
- Resonance function
- Explicit integration of the velocity integral

Quantum mechanics

- Internal structure: vibration & rotation
- Probability of collisionally induced transition

Intermolecular potential

- Molecular system dependent
- General combination of:
 - Electrostatic components (dipole, quadrupole, octupole, hexadecapole)
 - Atom-Atom components
 - Induction component
 - London dispersion component

$$V = \sum_{l_1 l_2 l} \sum_{\substack{n_1 m \\ m_1 m_2}} \sum_{w q} \frac{U(l_1 l_2 l, n_1 w q)}{R^{q+l_1+l_2+2w}}$$
$$C(l_1 l_2 l; m_1 m_2 m) D^{l_1}_{m_1 n_1}(\Omega_1) D^{l_2}_{m_2 0}(\Omega_2) Y_{l m}(\omega)$$

$$4^{\text{th}} \text{ rank } (I_{max} = 4); 20^{\text{th}} \text{ order } (I_1 + I_2 + 2w)$$

G. G. Gray, K. E. Gubbins, Theory of Molecular Fluids, Clarendon Press (Oxford 1984)

Intermolecular potential

$$V^{at-at} = \sum_{i=1}^{n} \sum_{j=1}^{m} 4\epsilon_{ij} \left\{ \frac{\sigma_{ij}^{12}}{r_{ij}^{12}} - \frac{\sigma_{ij}^{6}}{r_{ij}^{6}} \right\}$$

n and *m*: number of atoms in active molecule and perturber

 $\pmb{\epsilon}_{ij}$ and $\pmb{\sigma}_{ij}$: Lennard-Jones parameter for atomic pairs

r_{ij}: atom-atom distance

- Many combination rules
- Very different results

Intermolecular potential

 N_2O-N_2 : v_1 - combination rules

Intermolecular potential

 N_2O-N_2 : v_1 - combination rules

Intermolecular potential

$$V^{at-at} = \sum_{i=1}^{n} \sum_{j=1}^{m} 4\epsilon_{ij} \left\{ \frac{\sigma_{ij}^{12}}{r_{ij}^{12}} - \frac{\sigma_{ij}^{6}}{r_{ij}^{6}} \right\}$$

n and *m*: number of atoms in active molecule and perturber

 $\pmb{\epsilon}_{ij}$ and $\pmb{\sigma}_{ij}$: Lennard-Jones parameter for atomic pairs

r_{ii}: atom-atom distance

- Many combination rules
- Very different results
- Adjust at-at parameters to fit reliable experimental data

Potential determination (H_2O-H_2)

Renaud *et al.*, Icarus (2018), 306, 275

www.unamur.be

Potential determination (CO₂-H₂O)

Vispoel & Gamache, JQSRT, 316, 108896 (2024)

www.unamur.be

JSM2025 – Grenoble, 10-12 mars 2025

Potential determination (CO_2-H_2O)

Vispoel & Gamache, JQSRT, 316, 108896 (2024)

www.unamur.be

JSM2025 – Grenoble, 10-12 mars 2025

Line shape calculations Potential determination (CO_2-H_2O) 0.16 0.14 cm⁻¹ atm⁻¹ 0.12 ********* 7 % Difference= -0.11 SD= 1.19 N= 60 0.1 -100-50 50 100 0 m

Vispoel & Gamache, JQSRT, 316, 108896 (2024)

www.unamur.be

JSM2025 – Grenoble, 10-12 mars 2025

Potential determination

Régalia et al., JQSRT, 231, 126 (2019)

www.unamur.be

What next ?

HITRAN 2020 (H_2O)

- 319 887 transitions
- 555 different vibrational bands

- Make calculations for selected bands
- Develop a physic's-based prediction algorithm

Vibrational dependence – Prediction routine

 $\gamma[(v'_1, v'_2, v'_3)f \leftarrow (v''_1, v''_2, v''_3)i] = \gamma^0_{f \leftarrow i} + A_{f \leftarrow i} \times (0.3\Delta v_1 + 0.07\Delta v_2 + 0.3\Delta v_3)^2,$

H₂O-H₂ vibrational dependence 9 $_{0.9}$ <-- 10 $_{4.6}$

Summary

www.unamur.be

JSM2025 – Grenoble, 10-12 mars 2025

WHO is WHO?

Dr Laurence Régalia Maitre de conférences

Dr Séverine Robert Head of "Planetary Atmospheres" research unit

Prof. Robert R. Gamache Professor Emeritus

Thank you for your attention

www.unamur.be