Active Matter in two dimensions ### Leticia F. Cugliandolo Sorbonne Université Institut Universitaire de France ``` leticia@lpthe.jussieu.fr www.lpthe.jussieu.fr/~leticia ``` #### Work in collaboration with - C. Caporusso, G. Gonnella, P. Digregorio, G. Negro & I. Petrelli (Bari) - L. Carenza (Bari & Istanbul) - **A. Suma** (Trieste, Philadelphia & Bari) - D. Levis & I. Pagonabarraga (Barcelona & Lausanne) ### **2d Active Matter** #### Goal To understand the collective behavior of bidimensional active matter from the **statistical physics** viewpoint with the help of massive numerical simulations and some analytic arguments ### **Active Brownian Matter** #### Questions – à la Statistical Physics – on bidimensional systems - Activity (Pe) packing fraction (ϕ) phase diagram. - Order of, and mechanisms for, the phase transitions. - Correlations, fluctuations. - Topological defects. - Motility Induced Phase Separation. - Internal structure of dense phase. - Mechanisms for growth of dense phase. - Influence of particle shape, e.g. disks vs. dumbbells. ### **2d Active Matter** ### Why two dimensions? **Melting** in two dimensions is not fully understood It poses a theoretical challenge It is **experimentally** 'easier' than in three dimensions (...) It is computationally lighter to simulate 2d systems than 3d ones Manifold realisations of 2d active matter ### **Active Brownian Matter** #### **Questions – à la Statistical Physics** - Activity (Pe) packing fraction (ϕ) phase diagram. - Order of, and mechanisms for, the phase transitions. - Correlations, fluctuations. - Topological defects. - Motility Induced Phase Separation. - Internal structure of dense phase. - Mechanisms for growth of dense phase. - Influence of particle shape, e.g. disks vs. dumbbells. ### **Active Brownian Disks** (Overdamped) Langevin equations (the standard 2d model) Active force $\mathbf{F}_{\mathrm{act}}$ along $\mathbf{n}_i = (\cos \theta_i, \sin \theta_i)$ $$m\ddot{\mathbf{r}}_i + \gamma\dot{\mathbf{r}}_i = F_{\mathrm{act}}\mathbf{n}_i - \nabla_i \sum_{j(\neq i)} U_{\mathrm{Mie}}(r_{ij}) + \boldsymbol{\xi}_i \;, \qquad \dot{\theta}_i = \eta_i \;,$$ \mathbf{r}_i position of ith particle & $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$ inter-part distance, $U_{ m Mie}$ short-range **hardly repulsive** Mie potential, over-damped limit $m/\gamma=0.1$ ξ and η Gaussian noises with $\langle \xi_i^a(t) \rangle = \langle \eta_i(t) \rangle = 0$ $$\langle \xi_i^a(t)\,\xi_j^b(t')\rangle = 2\gamma k_B T \delta_{ij}^{ab} \delta(t-t') \text{ with } k_B T = 0.05, \text{ and } \langle \eta_i(t)\,\eta_j(t')\rangle = 2D_\theta \delta_{ij} \delta(t-t')$$ Persistence time $au_p=D_{\theta}^{-1}=\gamma\sigma^2/(3k_BT)$. Units of length σ and energy ε . Péclet number Pe = $F_{\rm act}\sigma/(k_BT)$ measures the activity and $$\phi = \pi \sigma^2 N/(4S)$$ the packing friction ### **Active Brownian disks** ### The typical motion of particles in interaction The active force induces a persistent random motion due to $$\langle \mathbf{F}_{ m act}(t) \cdot \mathbf{F}_{ m act}(t') \rangle \propto F_{ m act}^2 \, e^{-(t-t')/ au_p}$$ with $au_p = D_{ heta}^{-1} = \gamma \sigma^2/3k_BT$ ### **Active Brownian disks** #### **Questions – à la Statistical Physics** - ullet Pe ϕ Phase diagram start from solid and dilute progressively. - Order of, and mechanisms for, the phase transitions. - Correlations, fluctuations. - Topological defects. - Motility Induced Phase Separation. - Internal structure of dense phase. - Mechanisms for growth of dense phase. - Influence of particle shape, e.g. disks vs. dumbbells. # **Passive systems** the good old melting problem # Freezing/Melting Two step route in passive Pe = 0.2d systems Orientation order preserved also lost ### **Phases & transitions** 2d passive Pe = 0 systems: BKT-HNY scenario | | BKT-HNY | | |------------|---------------------|--| | Solid | QLR pos & LR orient | | | transition | BKT | | | Hexatic | SR pos & QLR orient | | | transition | BKT | | | Liquid | SR pos & orient | | Standard scenario: two step melting with two 'infinite order' transitions driven by the unbinding of defects # Freezing/Melting - arrows Hexatic (orientational) order parameter $\psi_{6j}=\frac{1}{nn_j}\sum_{k=1}^{nn_j}e^{i6\theta_{jk}}$ Voronoi tessellation ### **Correlations** **Hexatic orientational** **Positional density-density** | Orientational | Positional | Phase | Kind of order | |----------------|--------------|---------|------------------------------| | G_6 | G_T | | | | ct | $r^{-\eta}$ | Solid | long quasi-long range order | | $r^{-\eta_6}$ | $e^{-r/\xi}$ | Hexatic | quasi-long short range order | | e^{-r/ξ_6} | $e^{-r/\xi}$ | Liquid | short short range | ### **Phases & transitions** 2d passive Pe = 0 systems: BKT-HNY vs. a new scenario | | BKT-HNY | ВК | | |------------|-----------------------------------------|---------------------|--| | Solid | QLR pos & LR orient QLR pos & LR orient | | | | transition | BKT BKT | | | | Hexatic | SR pos & QLR orient | SR pos & QLR orient | | | transition | BKT 1st order | | | | Liquid | SR pos & orient | SR pos & orient | | Basically, the phases are the same, but the **hexatic-liquid** transition is different, allowing for **coexistence** of the two phases for hard enough particles Event driven MC simulations. Bernard & Krauth PRL 107, 155704 (2011) # **ABPs** in the passive limit #### **Local density & local hexatic parameter** ### **ABPs** how does the phase diagram project into the Pe axis? # **Phase Diagram** #### Solid, hexatic, liquid, co-existence and MIPS #### Phases characterized by - Translational correlations $C_{q_0}(r)$ & orientational order correlations $g_6(r)$ First order liquid - hexatic transition & co-existence at low Pe from - Pressure $P(\phi, Pe)$ (Equation of State EoS) - Distributions of local densities ϕ_i and hexatic order parameter $|\psi_{6}{}_i|$ Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003 (2018) # **Phase Diagram** #### Solid, hexatic, liquid, co-existence and MIPS #### KT-HNY solid-hexatic transition 1st order **hexatic-liquid** close to Pe = 0 until Pe ~ 2 ### Different from BKTHN picture! Pressure $P(\phi, \text{Pe})$ (EOS), correlations $C_{q_0}(r)$, $g_6(r)$, and distributions of ϕ_i , $|\psi_{6i}|$ defect identification & counting Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003 (2018) ### Mechanism for the transitions? Unbinding of point-like topological defects? ### **Phases & transitions** 2d passive Pe = 0 systems: BKT-HNY scenario | | BKT-HNY | | |---------------|----------------------------------|--| | Solid | QLR pos & LR orient | | | transition | BKT (unbinding of dislocations) | | | Hexatic phase | SR pos & QLR orient | | | transition | BKT (unbinding of disclinations) | | | Liquid | SR pos & orient | | Standard scenario: two step melting with two 'infinite order' transitions driven by the unbinding of defects # **BKT-HNY** theory #### Solid-hexatic transition & the emergence of the liquid Exponential decrease of the number density of defects at the transition coming from the disordered side $\phi \to \phi_c^-$ $$\begin{array}{c} \rho_d \sim a \; \exp\left[-b \; \left(\frac{\phi_c}{\phi_c - \phi}\right)^{\nu}\right] \\ \\ \xrightarrow{5} \end{array} \hspace{0.5cm} \text{Dislocation}$$ with $\nu=0.37$ for dislocations at the <code>solid</code> - <code>hexatic</code> transition and $\nu=0.5$ for disclinations at the <code>hexatic</code> - <code>liquid</code> transition ### **Mechanisms** #### **Unbinding of dislocations & disclinations?** **Dislocations** ▼ unbind at the **solid** - **hexatic** transition as in BKT-HNY theory $$ho_{dislocations} \sim a \; \exp\left[-b \; \left(rac{\phi_c}{\phi_c - \phi} ight)^{ u} ight] \qquad \qquad u \sim 0.37 \; \, orall \; \mathrm{Pe}$$ **Disclinations** ■ unbind when the **liquid** appears in the co-existence region Digregorio et al. Soft Matter 18, 566 (22); experiments Han, Ha, Alsayed & Yodh, PRE 77, 041406 (08) # **Topological defects** #### **Summary of results** - Solid hexatic à la BKT-HNY even quantitatively (ν value) and independently of the activity (Pe) Universality (with respect to ν) - **Hexatic liquid** very few disclinations and not even free Breakdown of the BKT-HNY picture for all Pe (even zero) - Close to, but in the liquid, $\frac{\text{percolation}}{\text{percolation}}$ of $\frac{\text{clusters of defects}}{\text{defects}}$ with - In MIPS, network of defects on top of the interfaces between hexatically ordered regions, interrupted by the gas bubbles in cavitation ### **Solid-hexatic** driven by unbinding of dislocation For all Pe < **Universality?** **Hexatic-liquid** **Disclinations?** ### **Disclinations** At the hexatic - liquid transition ϕ_l at all Pe dislocations disclinations Very few disclinations, and always very close to other defects, so **not free** # Clusters of nn defected particles **Close to the hexatic - liquid transition** As soon as the liquid appears in co-existence, defects in clusters dominate # Clusters of nn defected particles #### Percolation: the critical curve **Critical percolation With** fractal properties $d_{ m f} \sim 1.9$ and corresponding algebraic size distribution $au\sim 2.05$ # **Coarse-grained Clusters** #### **Percolation:** the critical curve **Critical percolation** With fractal properties $d_{ m f} \sim 1.9$ and corresponding algebraic size distribution $au \sim 2.05$ With some coarse-graining the **percolation curve** moves upward towards the **hexatic-liquid** critical one. ### Some open issues - Is the solid-hexatic transition trully universal? 1 Could u be constant and not the other exponents? 2 - For the liquid-hexatic transition, which are the critical clusters? - why is there no difference between the clusters behavior at the first and continuous phase transitions? Hard to go further with current numerical methods $^{^1}$ Shi and Chaté, Phys. Rev. Lett. 131, 108301 (2023) : claims for non-universality of η ²Agrawal, LFC, Faoro, loffe & Picco, in preparation, on a totally different problem! ### **Active Brownian disks** #### **Questions – à la Statistical Physics** - ullet Pe ϕ Phase diagram start from solid and dilute progressively - Order of, and mechanisms for, the phase transitions. - Correlations, fluctuations. - Topological defects. - Motility Induced Phase Separation. - Internal structure of dense phase. - Mechanisms for growth of dense phase. - Influence of particle shape, e.g. disks vs. dumbbells. # **Phase Diagram** Solid, hexatic, liquid, co-existence and MIPS Motility induced phase separation (MIPS) gas & dense Cates & Tailleur Ann. Rev. CM 6, 219 (2015) Farage, Krinninger & Brader PRE 91, 042310 (2015) Pressure $P(\phi, \text{Pe})$ (EOS), correlations $G_T(r)$, $G_6(r)$, and distributions of ϕ_i , $|\psi_{6i}|$ Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003 (2018) # **Motility Induced Phase Separation** #### The basic mechanism Particles collide heads-on and cluster even in the absence of attractive forces The colours indicate the direction along which the particles are pushed by the active force $m{F}_{ m act}$ ### **MIPS** #### Local density distributions - dense & gas The position of the peaks does not change while changing the global packing fraction ϕ but their relative height does. Transfer of mass from gas to dense component as ϕ increases ### **MIPS** ### Is it just a conventional phase separation? Similar to phase separation with percentage of system covered by dense and gas phases determined by a level rule? # The dense phase #### Hexatic patches, defects, bubbles Dense/dilute separation 1 For low packing fraction ϕ a single round droplet Growth 2 of clusters 3 with a mosaic of hexatic orders 3 with a subbles 2,4,5 & defects 6 ¹Cates & Tailleur, Annu. Rev. Cond. Matt. Phys. 6, 219 (2015) ²Caporusso, Digregorio, Levis, LFC & Gonnella, PRL 125, 178004 (2020) ³Caporusso, LFC, Digregorio, Gonnella, Levis & Suma, PRL 131, 068201 (2023) ⁴Tjhung, Nardini & Cates, PRX 8, 031080 (2018) ⁵Shi, Fausti, Chaté, Nardini & Solon, PRL 125, 168001 (2020) ⁶Digregorio, Levis, LFC, Gonnella & Pagonabarraga, Soft Matter 18, 566 (2022) ## **Structure** #### Dynamic structure factor ⇒ growing length of dense component # The growth law #### Growing length of the dense component and regimes In scaling regime $t^{1/3}$ like in Lifshitz-Slyozov-Wagner, scalar phase separation. ## Local hexatic order #### **Growing length of the orientational order – regimes** Local hexatic order parameter $$\psi_{6j} = \frac{1}{nn_j} \sum_{k=1}^{nn_j} e^{i6\theta_{jk}}$$ Full hexatically ordered small clusters Larger clusters with several orientational order within $R_H \sim t^{0.13}$ in the scaling regime and $R_H o R_H^s \ll L$ Similar to pattern formation, e.g. Vega, Harrison, Angelescu, Trawick, Huse, Chaikin & Register, PRE 71, 061803 (2005) # **Bubbles in cavitation** #### At the internal interfaces bubbles pop up Bubbles appear and disappear at the interfaces between hexatic patches Algebraic distribution of bubble sizes with a Pe-dependent exponential cut-off # **Growth of the dense phase** #### Beyond what has been done: focus on the clusters On the averaged scaling regime and the $t^{1/3}$: Redner, Hagan & Baskaran, PRL 110, 055701 (2013) Stenhammar, Marenduzzo, Allen & Cates, Soft Matter 10, 1489 (2014) Caporusso, Digregorio, Levis, LFC & Gonnella, PRL 125, 178004 (2020) ### Goal, answer the questions: 1. Is the growth like the one of passive attractive particles? #### **Ostwald ripening** 2. Are there other **mechanisms** at work in the active case? #### **Instantaneous configurations (DBSCAN)** **Passive - attractive** **Active - repulsive** The Mie potential is not truncated in the passive case \Rightarrow attractive Parameters are such that R(t) is the same in the two systems Colors in the zoomed box indicate orientational order Caporusso, LFC, Digregorio, Gonnella, Levis & Suma, PRL 131, 068201 (2023) #### Visual facts about the instantaneous configurations #### **Similarities** - Large variety of shapes and sizes (masses) Co-existence of small regular (dark blue) and large elongated (gray) clusters #### **Differences** - Rougher interfaces in active - Homogeneous (passive) vs. heterogeneous (active) orientational order within the clusters # **Cluster dynamics** #### Tracking of individual cluster motion - video In **red** the center of mass trajectory **Active is much faster than passive** #### Visual facts about the cluster dynamics In both cases, **Ostwald ripening** features - small clusters evaporate - gas particles attach to large clusters #### In the active system - clusters displace much more & sometimes aggregate - they also break & recombine like in diffusion limited cluster-cluster aggregation #### **Averaged mass** $$\overline{M} \equiv \frac{1}{N_c(t)} \sum_{\alpha=1}^{N_c(t)} M_{\alpha}(t) \sim t^{2/3}$$ Same three regimes as in R from the structure factor Clusters' dynamics origin? #### **Mean Square Displacement: diffusion** #### **Average over all clusters** #### Mass dependence $$\Delta_k^2(t, t_0) = [\mathbf{r}_{\text{c.o.m.}}^{(k)}(t) - \mathbf{r}_{\text{c.o.m.}}^{(k)}(t_0)]^2 \sim 2d D(M_k, \text{Pe}) (t - t_0)$$ A sum of random forces yields $D \sim M^{-1}$ Passive tracer in a dilute active bath $D \sim R^{-1} \sim M^{-1/2}$ Solon & Horowitz (22) Passive & very heavy isolated active clusters $D \sim M^{-1}$ # Geometry #### Scatter plots: small regular – large fractal Cluster mass $$M^*(t)= rac{M_k(t)}{\overline{M}(t)}$$ Gyration radius $R_g^*(t)= rac{R_{g_k}(t)}{\overline{R_g}(t)}$ Gyration radius $$R_g^*(t) = rac{R_{g_k}(t)}{\overline{R_g}(t)}$$ Data sampled in the scaling regime $t=10^3-10^5\,{ m every}\,10^3\,{ m time}\,{ m steps}$ $$\overline{M}(t)= rac{1}{N_c(t)}\sum_{k=1}^{N_c(t)}M_k(t)$$ and $N_c(t)$ the total number of clusters at time t # Cluster-cluster aggregation #### **Extended Smoluchowski argument** From $$\overline{R}_g \sim t^{1/z}$$ and using $D(M) \sim M^{-\alpha}$ Smoluchowski eq. $\Rightarrow z = d_f (1+\alpha) - (d-d_w)$ Regular clusters $$M < \overline{M}$$ $$d_f = d = d_w = 2$$ $$\alpha = 0.5$$ $$z = 2(1+0.5) = 3$$ #### Fractal clusters $M>\overline{M}$ $$d_f=1.45,\, d=2$$ and $d_w\sim 2$ $$\alpha = 0.5$$ in the bulk $$z = 1.45(1 + 0.5) = 2.18 < 3$$ Reviews on the application of fractals to colloidal aggregation R. Jullien, Croatia Chemica Acta 65, 215 (1992) P. Meakin, Physica Scripta 46, 295 (1992) # Regular vs fractal clusters #### Radius of gyration and number regular $z \gtrsim 3$ fractal z < 3More Less average $z = 1/0.31 \sim 3$ All **Dominate** ## **Results I on ABPs** We established the full phase diagram of ABPs solid, hexatic, liquid & MIPS We clarified the role played by point-like (dislocations & disclinations) and clustered defects in passive & active 2d models. In MIPS Micro vs. macro: hexatic patches & bubbles ## **Results II on ABPs** Difference between **Passive** **Active** growth Ostwald ripening & cluster-cluster diffusive aggregation in active case cluster-cluster aggregation almost not present in passive Co-existence of regular and fractal clusters in both cases Heterogeneous orientational order in large active clusters only ## **Active Brownian disks** #### **Questions – à la Statistical Physics** - ullet Pe ϕ Phase diagram start from solid and dilute progressively - Order of, and mechanisms for, the phase transitions. - Correlations, fluctuations. - Topological defects. - Motility Induced Phase Separation. - Internal structure of dense phase. - Mechanisms for growth of dense phase. - Influence of particle shape, e.g. disks vs. dumbbells. # **Active dumbbell** #### Diatomic molecule - toy model for bacteria Escherichia coli Picture borrowed from the internet A dumbbell ## **Active Dumbbells** #### e.g., a diatomic molecule or a dumbbell Two spherical atoms with diameter $\sigma_{\rm d}$ and mass $m_{\rm d}$ Massless spring modelled by a finite extensible non-linear elastic (fene) force between the atoms $${f F}_{ m fene}=- rac{k({m r}_i-{m r}_j)}{1-r_{ij}^2/r_0^2}$$ with an additional repulsive contri- bution (WCA potential) to avoid atomic/colloidal overlapping (see next slides) Langevin modeling of the interaction with the embedding fluid: isotropic viscous forces, $-\gamma v_i$, and independent noises, ξ_i , on the beads. Translational motion (centre of mass) Rotations due to effective torque applied by noise Vibrations due to the fene potential ### **Active Dumbbells** #### a dumbbell made of a colloid 1 and a colloid 2 $$m\ddot{\boldsymbol{r}}_1 = -\gamma\dot{\boldsymbol{r}}_1 + \mathbf{F}_{\mathrm{pot}_1}(\boldsymbol{r}_1, \boldsymbol{r}_2) + \mathbf{F}_{\mathrm{act}} + \boldsymbol{\xi}_1$$ $m\ddot{\boldsymbol{r}}_2 = -\gamma\dot{\boldsymbol{r}}_2 + \mathbf{F}_{\mathrm{pot}_2}(\boldsymbol{r}_1, \boldsymbol{r}_2) + \mathbf{F}_{\mathrm{act}} + \boldsymbol{\xi}_2$ with $\mathbf{F}_{\mathrm{pot}} = \mathbf{F}_{\mathrm{wca}} + \mathbf{F}_{\mathrm{fene}}$, $V = V_{\mathrm{wca}} + V_{\mathrm{fene}}$ hard and repulsive $$V_{\text{wca}}(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}) = \begin{cases} V_{\text{LJ}}(r_{12}) - V_{LJ}(r_{c}) & r < r_{c} \\ 0 & r > r_{c} \end{cases}$$ $$V_{LJ}(r_{12}) = 4\epsilon \left[\left(\frac{\sigma}{r_{12}} \right)^{2n} - \left(\frac{\sigma}{r_{12}} \right)^{n} \right] \qquad r_{c} = 2^{1/n} \sigma = \sigma_{d}$$ ### **Active Dumbbells** #### a dumbbell made of a colloid 1 and a colloid 2 $$m_{\mathrm{d}}\ddot{\boldsymbol{r}}_{1} = -\gamma\dot{\boldsymbol{r}}_{1} + \mathbf{F}_{\mathrm{pot}_{1}}(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}) + \mathbf{F}_{\mathrm{act}} + \boldsymbol{\xi}_{1}$$ $$m_{\mathrm{d}}\ddot{\boldsymbol{r}}_{2} = -\gamma\dot{\boldsymbol{r}}_{2} + \mathbf{F}_{\mathrm{pot}_{2}}(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}) + \mathbf{F}_{\mathrm{act}} + \boldsymbol{\xi}_{2}$$ with $$\mathbf{F}_{\mathrm{pot}} = \mathbf{F}_{\mathrm{wca}} + \mathbf{F}_{\mathrm{fene}}$$, $V = V_{\mathrm{wca}} + V_{\mathrm{fene}}$ and ξ_i independent Gaussian thermal noises acting on the two beads, zero average $$\langle \xi_a^i(t) \rangle = 0$$ and $\langle \xi_a^i(t) \xi_b^j(t') \rangle = 2 \gamma k_B T \delta_{ij} \delta_{ab} \delta(t - t')$. i, j = 1, 2 bead labels, $a, b = 1, \dots, d$ coordinate labels # **Beyond disks** #### Phase diagrams & plenty of interesting facts **AB Disks** **AB Dumbbells** # ABPs vs. ABDs #### **Hexatic order & Correlations** Digregorio, Levis, Suma, LFC, Gonnella, Pagonabarraga, J. Phys. C: Conf. Ser. 1163, 012073 (2019) # ABPs vs. ABDs **Growth of dense phases both at Pe = 100 and 50 :50** AB Disks slower AB Dumbbells faster # **Active Brownian Dumbbells** #### Growth of the hexatic order **Video** **Much faster growth than for ABPs** Full order is reached No bubbles # **Active Brownian Dumbbells** #### **Motion of isolated dumbbell clusters** #### time - Instability of clusters with multi-orientational order: they break up along the hexatic interfaces - The center of mass (c.o.m.) of each cluster lpha rotates with constant angular velocity ω_{lpha} - The clusters rotate around their c.o.m. with the same angular velocity ω_{lpha} #### **Torque** # **Active Brownian Dumbbells** Motion of isolated dumbbell clusters video # **Active Dumbbell clusters** #### **Trajectories** $$r = MR_g \frac{F_{\text{act}}^{\perp}}{T_{\text{act}}}$$ The radius of the c.o.m. trajectory **Trajectories in the bulk** Non-vanishing : active torque $T_{ m act}$ & force $F_{ m act}$ Rotation instead of ABP diffusion **Video** # Results III ABPs vs ABDs ### **Extras** # Cluster-cluster aggregation #### **Extended Smoluchowski argument** From $$\overline{R}_g \sim t^{1/z}$$ and using $D(M) \sim M^{-\alpha}$ Smoluchowski eq. $\Rightarrow z = d_f (1+\alpha) - (d-d_w)$ Regular clusters $$M < \overline{M}$$ $$d_f = d = d_w = 2$$ $$\alpha = 0.5$$ $$z = 2(1+0.5) = 3$$ #### Fractal clusters $M>\overline{M}$ $$d_f=1.45,\, d=2$$ and $d_w\sim 2$ if, instead, $$|\alpha=1|$$ $$z = 1.45(1+1) \sim 3$$ Reviews on the application of fractals to colloidal aggregation R. Jullien, Croatia Chemica Acta 65, 215 (1992) P. Meakin, Physica Scripta 46, 295 (1992) ## **Dislocations** At the solid-hexatic transition for all Pe $\nu=0.37$ Universality Four (ϕ_c, ν, a, b) dotted) vs. three $(\phi_c, \nu = 0.37, a, b)$ dashed) parameter fits on data in the hexatic & solid phases only. Criteria to support $\nu = 0.37$: - $-\chi^2$ cfr. Batrouni et al for 2dXY - not crazy values for a, b but crazy values for ν if let to be fitted - difference between ϕ_c and ϕ_h erased by coarse-graining # Interfaces #### **Clusters of defects – mostly along hexatic-hexatic interfaces** Zoom over the rectangular selection ### **Clusters of defects** #### Size distribution - Finite size cut-off $$P(n) \simeq n^{-\tau} e^{-n/n^*}$$ Independence of ϕ at fixed Pe within MIPS $n^* \sim 30, 50, 200$ in the solid, hexatic and MIPS, respectively, and $\tau \sim 2.2$