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2d Active Matter
Goal

To understand the collective behavior of bidimensional active matter

from the statistical physics viewpoint

with the help of massive numerical simulations

and some analytic arguments
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Active Brownian Matter
Questions – à la Statistical Physics – on bidimensional systems

• Activity (Pe) - packing fraction (φ) phase diagram.

• Order of, and mechanisms for, the phase transitions.

− Correlations, fluctuations.

− Topological defects.

• Motility Induced Phase Separation.

− Internal structure of dense phase.

− Mechanisms for growth of dense phase.

• Influence of particle shape, e.g. disks vs. dumbbells.
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2d Active Matter
Why two dimensions?

Melting in two dimensions is not fully understood

It poses a theoretical challenge

It is experimentally ‘easier’ than in three dimensions (...)

It is computationally lighter to simulate 2d systems than 3d ones

Manifold realisations of 2d active matter
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Active Brownian Matter
Questions – à la Statistical Physics

• Activity (Pe) - packing fraction (φ) phase diagram.

• Order of, and mechanisms for, the phase transitions.

− Correlations, fluctuations.

− Topological defects.

• Motility Induced Phase Separation.

− Internal structure of dense phase.

− Mechanisms for growth of dense phase.

• Influence of particle shape, e.g. disks vs. dumbbells.
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Active Brownian Disks
(Overdamped) Langevin equations (the standard 2d model)

Active force Fact along ni = (cos θi, sin θi)

mr̈i + γṙi = Factni −5i

∑
j(6=i)

UMie(rij) + ξi , θ̇i = ηi ,

ri position of ith particle & rij = |ri − rj | inter-part distance,

UMie short-range hardly repulsive Mie potential, over-damped limit m/γ = 0.1

ξ and η Gaussian noises with 〈ξai (t)〉= 〈ηi(t)〉= 0

〈ξai (t) ξbj (t′)〉 = 2γkBTδ
ab
ij δ(t− t′) with kBT = 0.05, and 〈ηi(t) ηj(t′)〉 = 2Dθδijδ(t− t′)

Persistence time τp = D−1θ = γσ2/(3kBT ). Units of length σ and energy ε.

Péclet number Pe = Factσ/(kBT ) measures the activity and

φ = πσ2N/(4S) the packing friction
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Active Brownian disks
The typical motion of particles in interaction

The active force induces a persistent random motion due to

〈Fact(t) · Fact(t
′)〉 ∝ F 2

act e
−(t−t′)/τp

with τp = D−1θ = γσ2/3kBT
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Active Brownian disks
Questions – à la Statistical Physics

• Pe - φ Phase diagram – start from solid and dilute progressively.

• Order of, and mechanisms for, the phase transitions.

− Correlations, fluctuations.

− Topological defects.

• Motility Induced Phase Separation.

− Internal structure of dense phase.

− Mechanisms for growth of dense phase.

• Influence of particle shape, e.g. disks vs. dumbbells.
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Passive systems
the good old melting problem
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Freezing/Melting
Two step route in passive Pe = 0 2d systems

Image from Pal, Kamal & Raghunathan, Sc. Rep. 6, 32313 (2016)

T = 0 Position & orientation order lost

Orientation order preserved also lost
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Phases & transitions
2d passive Pe = 0 systems: BKT-HNY scenario

BKT-HNY Bernard-Krauth

Solid QLR pos & LR orient QLR pos & LR orient

transition BKT BKT

Hexatic SR pos & QLR orient SR pos & QLR orient

transition BKT 1st order

Liquid SR pos & orient SR pos & orient

Standard scenario: two step melting with two ‘infinite order’ transitions

driven by the unbinding of defects

BKT-HNY Berezinskii-Kosterlitz-Thouless Halperin-Nelson-Young 70s
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Freezing/Melting - arrows
Hexatic (orientational) order parameter ψ6j = 1

nnj

nnj∑
k=1

ei6θjk

arrows oriented (LR) less oriented (QLR) order lost (SRL)

• five neighbours • seven neighbours

Voronoi tessellation
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Correlations
Hexatic orientational Positional density-density

Solid Hexatic Liquid

Orientational Positional Phase Kind of order

G6 GT

ct r−η Solid long quasi-long range order

r−η6 e−r/ξ Hexatic quasi-long short range order

e−r/ξ6 e−r/ξ Liquid short short range
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Phases & transitions
2d passive Pe = 0 systems: BKT-HNY vs. a new scenario

BKT-HNY BK

Solid QLR pos & LR orient QLR pos & LR orient

transition BKT BKT

Hexatic SR pos & QLR orient SR pos & QLR orient

transition BKT 1st order

Liquid SR pos & orient SR pos & orient

Basically, the phases are the same, but the hexatic-liquid transition is different,

allowing for coexistence of the two phases for hard enough particles

Event driven MC simulations. Bernard & Krauth PRL 107, 155704 (2011)
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ABPs in the passive limit
Local density & local hexatic parameter

φ

(co-existence) (co-existence) (upper limit of co-existence)
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ABPs
how does the phase diagram

project into the Pe axis?
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Phase Diagram
Solid, hexatic, liquid, co-existence and MIPS

φ

Pe r−η e−r/ξ ct r−η6 e−r/ξ6

Phases characterized by

− Translational correlationsCq0(r) & orientational order correlations g6(r)

First order liquid - hexatic transition & co-existence at low Pe from

− Pressure P (φ, Pe)(Equation of State - EoS)

− Distributions of local densities φi and hexatic order parameter |ψ6i|

Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003 (2018)
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Phase Diagram
Solid, hexatic, liquid, co-existence and MIPS

KT-HNY solid-hexatic transition

1st order hexatic-liquid close to Pe = 0

until Pe∼ 2

Different from BKTHN picture !
disclination unbinding in liquid

percolation of defect clusters in liquid

Pressure P (φ, Pe) (EOS), correlations Cq0(r), g6(r), and distributions of φi, |ψ6i|
defect identification & counting

Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003 (2018)
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Mechanism for the transitions?
Unbinding of point-like topological defects ?
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Phases & transitions
2d passive Pe = 0 systems: BKT-HNY scenario

BKT-HNY Bernard-Krauth

Solid QLR pos & LR orient QLR pos & LR orient

transition BKT (unbinding of dislocations) BKT

Hexatic phase SR pos & QLR orient SR pos & QLR orient

transition BKT (unbinding of disclinations) 1st order

Liquid SR pos & orient SR pos & orient

Standard scenario: two step melting with two ‘infinite order’ transitions

driven by the unbinding of defects

BKT-HNY Berezinskii-Kosterlitz-Thouless Halperin-Nelson-Young 70s
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BKT-HNY theory
Solid-hexatic transition & the emergence of the liquid

Exponential decrease of the number density of defects at the transition

coming from the disordered side φ→ φ−c

ρd ∼ a exp
[
−b
(

φc
φc−φ

)ν]
Disclination

5

Dislocation

5 7

with ν = 0.37 for dislocations at the solid - hexatic transition

and ν = 0.5 for disclinations at the hexatic - liquid transition
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Mechanisms
Unbinding of dislocations & disclinations?

5 & 7 neighbors

Dislocations

N
Disclinations

�

Dislocations

N

unbind at the solid - hexatic transition as in BKT-HNY theory

ρdislocations ∼ a exp
[
−b
(

φc
φc−φ

)ν]
ν ∼ 0.37 ∀ Pe

Disclinations � unbind when the liquid appears in the co-existence region

Digregorio et al. Soft Matter 18, 566 (22) ; experiments Han, Ha, Alsayed & Yodh, PRE 77, 041406 (08)
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Topological defects
Summary of results

• Solid - hexatic à la BKT-HNY even quantitatively (ν value) and

independently of the activity (Pe) Universality (with respect to ν)

• Hexatic - liquid very few disclinations and not even free

Breakdown of the BKT-HNY picture for all Pe (even zero)

• Close to, but in the liquid, percolation of clusters of defects with

properties of uncorrelated critical percolation (df , τ )

• In MIPS, network of defects on top of the interfaces between hexati-

cally ordered regions, interrupted by the gas bubbles in cavitation

Digregorio, Levis, Cugliandolo, Gonnella, Pagonabarraga, Soft Matter 18, 566 (2022)
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Solid-hexatic
driven by unbinding of dislocation

For all Pe 4

Universality?

Hexatic-liquid
Disclinations?
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Disclinations
At the hexatic - liquid transition φl at all Pe

dislocations

disclinations

Very few disclinations, and always very close to other defects, so not free
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Clusters of nn defected particles
Close to the hexatic - liquid transition

As soon as the liquid appears in co-existence, defects in clusters dominate

27



Clusters of nn defected particles
Percolation: the critical curve

Critical percolation with
fractal properties df ∼ 1.9 and

corresponding algebraic size distribution τ ∼ 2.05
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Coarse-grained Clusters
Percolation: the critical curve

Critical percolation with fractal properties df ∼ 1.9 and

corresponding algebraic size distribution τ ∼ 2.05

With some coarse-graining the percolation curve moves upward towards the

hexatic-liquid critical one.

29



Some open issues

- Is the solid-hexatic transition trully universal?1

Could ν be constant and not the other exponents?2

- For the liquid-hexatic transition, which are the critical

clusters?

- why is there no difference between the clusters behavior

at the first and continuous phase transitions?

Hard to go further with current numerical methods

1Shi and Chaté, Phys. Rev. Lett. 131, 108301 (2023) : claims for non-universality of η
2Agrawal, LFC, Faoro, Ioffe & Picco, in preparation, on a totally different problem!
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Active Brownian disks
Questions – à la Statistical Physics

• Pe - φ Phase diagram – start from solid and dilute progressively

• Order of, and mechanisms for, the phase transitions.

− Correlations, fluctuations.

− Topological defects.

• Motility Induced Phase Separation.

− Internal structure of dense phase.

− Mechanisms for growth of dense phase.

• Influence of particle shape, e.g. disks vs. dumbbells.
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Phase Diagram
Solid, hexatic, liquid, co-existence and MIPS

Motility induced

phase separation (MIPS)

gas & dense

Cates & Tailleur

Ann. Rev. CM 6, 219 (2015)

Farage, Krinninger & Brader

PRE 91, 042310 (2015)

Pressure P (φ, Pe)(EOS), correlations GT (r), G6(r), and distributions of φi, |ψ6i|

Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003 (2018)
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Motility Induced Phase Separation
The basic mechanism

Particles collide heads-on

and cluster even in the

absence of attractive forces

→ blue 0 ← red π

The colours indicate the direction along which the particles are pushed by the active force F act
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MIPS
Local density distributions - dense & gas

Gas Dense

The position of the peaks does not change while changing the global packing

fraction φ but their relative height does. Transfer of mass from gas to dense

component as φ increases
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MIPS
Is it just a conventional phase separation?

Similar to phase separation with percentage of system covered by dense and

gas phases determined by a level rule?
Cates & Tailleur 12
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The dense phase
Hexatic patches, defects, bubbles

Dense/dilute separation1

For low packing fraction φ

a single round droplet

Growth2 of clusters3 with a mosaic

of hexatic orders3 with

gas bubbles2,4,5 & defects6

1Cates & Tailleur, Annu. Rev. Cond. Matt. Phys. 6, 219 (2015)
2Caporusso, Digregorio, Levis, LFC & Gonnella, PRL 125, 178004 (2020)
3Caporusso, LFC, Digregorio, Gonnella, Levis & Suma, PRL 131, 068201 (2023)
4Tjhung, Nardini & Cates, PRX 8, 031080 (2018)
5Shi, Fausti, Chaté, Nardini & Solon, PRL 125, 168001 (2020)
6Digregorio, Levis, LFC, Gonnella & Pagonabarraga, Soft Matter 18, 566 (2022)
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Structure
Dynamic structure factor⇒ growing length of dense component

kI(t) ∝ R−1(t)

No sign of fractality here. Porod’s law S(k) ∼ k−(d+1) for compact domains with sharp interfaces
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The growth law
Growing length of the dense component and regimes

Different Pe
Movie

R(t)→ aL

In scaling regime t1/3 like in Lifshitz-Slyozov-Wagner, scalar phase separation.

More about it & asymptotic value later
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Local hexatic order
Growing length of the orientational order – regimes

Local hexatic order parameter

ψ6j =
1

nnj

nnj∑
k=1

ei6θjk

Full hexatically ordered small clusters Larger clusters with several orientational order within

RH ∼ t0.13 in the scaling regime and RH → RsH � L

Similar to pattern formation, e.g.

Vega, Harrison, Angelescu, Trawick, Huse, Chaikin & Register, PRE 71, 061803 (2005)
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Bubbles in cavitation
At the internal interfaces bubbles pop up

Bubbles appear and disappear at the interfaces between hexatic patches

Algebraic distribution of bubble sizes with a Pe-dependent exponential cut-off
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Growth of the dense phase
Beyond what has been done: focus on the clusters

R Nc total number of clusters

Nucleation Evap/coag Scaling

On the averaged scaling regime and the t1/3 :
Redner, Hagan & Baskaran, PRL 110, 055701 (2013)

Stenhammar, Marenduzzo, Allen & Cates, Soft Matter 10, 1489 (2014)

Caporusso, Digregorio, Levis, LFC & Gonnella, PRL 125, 178004 (2020) Beyond?
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Goal, answer the questions:

1. Is the growth like the one of passive attractive particles?

Ostwald ripening

2. Are there other mechanisms at work in the active case?

Cluster-cluster aggregation
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Dense clusters
Instantaneous configurations (DBSCAN)

Passive - attractive Active - repulsive

The Mie potential is not truncated in the passive case⇒ attractive

Parameters are such that R(t) is the same in the two systems

Colors in the zoomed box indicate orientational order

Caporusso, LFC, Digregorio, Gonnella, Levis & Suma, PRL 131, 068201 (2023)
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Dense clusters
Visual facts about the instantaneous configurations

Similarities

- Large variety of shapes and sizes (masses)

Co-existence of

small regular (dark blue) and large elongated (gray) clusters

Differences

- Rougher interfaces in active

- Homogeneous (passive) vs. heterogeneous (active) orientational order

within the clusters

44



Cluster dynamics
Tracking of individual cluster motion - video

Active

Passive

t = 0

(a)

t = 90

(b)

t = 275

(c)

t = 465

(d)

t = 0

(e)

t = 1000

(f)

t = 2000

(g)

t = 3000

(h)

In red the center of mass trajectory

Active is much faster than passive
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Dense clusters
Visual facts about the cluster dynamics

In both cases, Ostwald ripening features

- small clusters evaporate

- gas particles attach to large clusters

In the active system

- clusters displace much more & sometimes aggregate

- they also break & recombine

like in diffusion limited cluster-cluster aggregation
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Dense clusters
Averaged mass

M ≡ 1

Nc(t)

Nc(t)∑
α=1

Mα(t) ∼ t2/3

Same three regimes as in R from the structure factor

Clusters’ dynamics origin?
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Dense clusters
Mean Square Displacement: diffusion

Average over all clusters Mass dependence

∆2
k(t, t0) = [r(k)c.o.m.(t)− r(k)c.o.m.(t0)]

2 ∼ 2dD(Mk,Pe) (t− t0)

A sum of random forces yields D ∼M−1
Passive tracer in a dilute active bath D ∼ R−1 ∼M−1/2 Solon & Horowitz (22)

Passive & very heavy isolated active clusters D ∼M−1
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Geometry
Scatter plots: small regular – large fractal

Cluster mass M∗(t) =
Mk(t)

M(t)
Gyration radius R∗g(t) =

Rgk(t)

Rg(t)

Data sampled in the scaling regime t = 103 − 105 every 103 time steps

M(t) =
1

Nc(t)

Nc(t)∑
k=1

Mk(t) and Nc(t) the total number of clusters at time t
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Cluster-cluster aggregation
Extended Smoluchowski argument

From Rg ∼ t1/z and using D(M) ∼M−α

Smoluchowski eq.⇒ z = df (1 + α)− (d− dw)

Regular clusters M < M

df = d = dw = 2

α = 0.5

z = 2(1 + 0.5) = 3

Fractal clusters M > M

df = 1.45, d = 2 and dw ∼ 2

α = 0.5 in the bulk

z = 1.45(1 + 0.5) = 2.18 < 3

Reviews on the application of fractals to colloidal aggregation

R. Jullien, Croatia Chemica Acta 65, 215 (1992) P. Meakin, Physica Scripta 46, 295 (1992)
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Regular vs fractal clusters
Radius of gyration and number

regular z & 3 fractal z < 3 average z = 1/0.31 ∼ 3

More Less All

Dominate
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Results I on ABPs

We established the full

phase diagram of ABPs

solid, hexatic, liquid & MIPS

We clarified the role played by point-like

(dislocations & disclinations)

and clustered defects in

passive & active 2d models.

In MIPS

Micro vs. macro: hexatic patches & bubbles
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Results II on ABPs

Difference between

Passive

Active

growth

Ostwald ripening & cluster-cluster diffusive aggregation in active case
cluster-cluster aggregation almost not present in passive

Co-existence of regular and fractal clusters in both cases

Heterogeneous orientational order in large active clusters only
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Active Brownian disks
Questions – à la Statistical Physics

• Pe - φ Phase diagram – start from solid and dilute progressively

• Order of, and mechanisms for, the phase transitions.

− Correlations, fluctuations.

− Topological defects.

• Motility Induced Phase Separation.

− Internal structure of dense phase.

− Mechanisms for growth of dense phase.

• Influence of particle shape, e.g. disks vs. dumbbells.
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Active dumbbell
Diatomic molecule - toy model for bacteria

Escherichia coli

Picture borrowed

from the internet
A dumbbell
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Active Dumbbells
e.g., a diatomic molecule or a dumbbell

Two spherical atoms with diameter σd and mass md

Massless spring modelled by a finite extensible non-linear elastic (fene) force

between the atoms Ffene = −k(ri − rj)
1− r2ij/r20

with an additional repulsive contri-

bution (WCA potential) to avoid atomic/colloidal overlapping (see next slides)

Langevin modeling of the interaction with the embedding fluid:

isotropic viscous forces,−γvi, and independent noises, ξi, on the beads.

Translational motion (centre of mass)

Rotations due to effective torque applied by noise

Vibrations due to the fene potential

56



Active Dumbbells
a dumbbell made of a colloid 1 and a colloid 2

mr̈1 = −γṙ1 + Fpot1(r1, r2) + Fact + ξ1

mr̈2 = −γṙ2 + Fpot2(r1, r2) + Fact + ξ2

with Fpot = Fwca + Ffene, V = Vwca + Vfene hard and repulsive

Vwca(r1, r2) =

 VLJ(r12)− VLJ(rc) r < rc

0 r > rc

VLJ(r12) = 4ε

[(
σ

r12

)2n

−
(
σ

r12

)n]
rc = 21/n σ = σd
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Active Dumbbells
a dumbbell made of a colloid 1 and a colloid 2

mdr̈1 = −γṙ1 + Fpot1(r1, r2) + Fact + ξ1

mdr̈2 = −γṙ2 + Fpot2(r1, r2) + Fact + ξ2

with Fpot = Fwca + Ffene, V = Vwca + Vfene and

ξi independent Gaussian thermal noises acting on the two beads,

zero average 〈ξia(t)〉 = 0 and 〈ξia(t)ξjb(t
′)〉 = 2 γkBT δijδab δ(t− t′).

i, j = 1, 2 bead labels, a, b = 1, . . . , d coordinate labels
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Beyond disks
Phase diagrams & plenty of interesting facts

AB Disks AB Dumbbells

LFC, Digregorio, Gonnella & Suma, Phys. Rev. Lett. 119, 268002 (2017)
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ABPs vs. ABDs
Hexatic order & Correlations

Digregorio, Levis, Suma, LFC, Gonnella, Pagonabarraga, J. Phys. C : Conf. Ser. 1163, 012073 (2019)
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ABPs vs. ABDs
Growth of dense phases both at Pe = 100 and 50 :50

AB Disks AB Dumbbells

slower faster

Caporusso, LFC, Digregorio, Gonnella & Suma, Soft Matter (2024)
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Active Brownian Dumbbells
Growth of the hexatic order

Video

Much faster growth than for ABPs

Full order is reached

No bubbles

Caporusso, LFC, Digregorio, Gonnella & Suma, Soft Matter (2024)
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Active Brownian Dumbbells
Motion of isolated dumbbell clusters

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

time

Torque

− Instability of clusters with multi-orientational order :

they break up along the hexatic interfaces

− The center of mass (c.o.m.) of each cluster α rotates

with constant angular velocity ωα
− The clusters rotate around their c.o.m. with the same

angular velocity ωα

Solid body motion
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Active Brownian Dumbbells
Motion of isolated dumbbell clusters video
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Active Dumbbell clusters
Trajectories

r =MRg
F⊥act
Tact

The radius of the c.o.m. trajectory

Trajectories in the bulk

Non-vanishing :
active torque Tact & force Fact

Rotation instead of ABP diffusion

Video

Caporusso, LFC, Digregorio, Gonnella & Suma, Soft Matter (2024)
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Results III ABPs vs ABDs

AB Disks AB Dumbbells

diffusion rotations
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Extras
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Cluster-cluster aggregation
Extended Smoluchowski argument

From Rg ∼ t1/z and using D(M) ∼M−α

Smoluchowski eq.⇒ z = df (1 + α)− (d− dw)

Regular clusters M < M

df = d = dw = 2

α = 0.5

z = 2(1 + 0.5) = 3

Fractal clusters M > M

df = 1.45, d = 2 and dw ∼ 2

if, instead, α = 1

z = 1.45(1 + 1) ∼ 3

Reviews on the application of fractals to colloidal aggregation

R. Jullien, Croatia Chemica Acta 65, 215 (1992) P. Meakin, Physica Scripta 46, 295 (1992)
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Dislocations
At the solid-hexatic transition for all Pe ν = 0.37 Universality

Four (φc, ν, a, b dotted) vs. three (φc, ν = 0.37, a, b dashed) parameter fits on data

in the hexatic & solid phases only. Criteria to support ν = 0.37 :
– χ2 cfr. Batrouni et al for 2dXY
– not crazy values for a, b but crazy values for ν if let to be fitted
– difference between φc and φh erased by coarse-graining
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Interfaces
Clusters of defects – mostly along hexatic-hexatic interfaces

Hexatic order map Defects

Zoom over the rectangular selection
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Clusters of defects
Size distribution - Finite size cut-off

P (n) ' n−τe−n/n∗

Independence of φ at fixed Pe within MIPS

n∗ ∼ 30, 50, 200 in the solid, hexatic and MIPS, respectively, and τ ∼ 2.2
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