Modeling and simulation of human crowds:

the emergence of machine learning models and the question of training data.

Julien Pettré, Inria Research Scientist
Collective Motions of Animals and Robots
Cargese, May 28 2024

Disclaimer

This presentation is meant to be any-discipline-friendly

The title can be misleading - I won't talk about Al

I selected the most "exotic" results (2015-24)

VirtUs team

Multidisciplinary team:

Computer Sciences, Motion Sciences and Psychology 6 permanents, ~20 students, engineers, postdocs

Research objective:

Create immersive simulation of populated environments for scientific purposes

Context

Crowd modelling and simulation for VFX in movies...

video games...

Evaluation & training platforms...

Events safety...

Research topics

Crowd simulation

2D particles systems

Machine Learning

Vision agents

Full-body crowd simulation

Evaluation and calibration

Evaluation of real vs. simulated data

Estimation of simulation parameters

Context dependent mixture models

New experimental methodologies

Laboratory experiments

Field experiments

Virtual Reality

Human crowd data

[Lerner et al. 2008]

[Cao et al. 2017]

[Berton et al. 2020]

Not a that recent idea actually

2009 2019

Part 1

VR for navigation data

How VR can be useful to understand locomotion and navigation strategies in crowds

(to replace this kind of experiments)

Going through or going around?

Local interactions with groups

Groups of changing radius and density Simulate two strategies (around vs. through) Compute energy for each $E = m \int (e_s + e_w |v|^2) dt$ [Whittle, 2003]

Task and stimuli

Results

Going through

3.5

Interpersonal distance (m)

Conclusion

VR delivers data quickly (need a single participant + no data postprocessing)

Logistical, ethical, legal, statistical aspects are simplified

Complete knowledge about the environment

Note: we did evaluate ecological validity + behavioral biases

Can we go a bit further in the understanding of human behaviours?

Part 2

VR for locomotion + eye-gaze data

How can VR help understanding deeper how humans form trajectories in crowds

Can we use VR here?

Results

Participants have different head and eye motions...

But look at the same thing.

Head & Heading

Head & Gaze

Gaze and interactions?

$$f: \mathbb{R}^n \to \mathbb{R}$$

$$f\left(\mathbf{s}_{t,i}, \left\{\mathbf{s}_{t,j}\right\}_{j \neq i}\right) = c$$

Can gaze reveal neighborhood?

Gaze and interactions?

Is visual attention « linked » to collision avoidance?

What is collision risk?

Small future distance of closest approach

Small time to closest approach

Do we look more at characters of highest risk of collision?

Have we looked at characters we avoid?

1 2 3

Pareto rank

5 6

Pareto rank

Application: density-neighborhood

Difficulties

Ethical approval
Video analysis for semantics,
geometry and motion

Virtual replication of the vasselot street

Average fixation duration (ms)

Average saccade amplitude (°)

Effect of density on gaze behaviors

Effect of density on gaze behaviors

Average Fixation Duration (ms)

Average Saccade Amplitude(°)

Conclusion

VR delivers complex data quickly

Experimental opportunities (difficult in real conditions)

Limited capability to capture « collective » dataset

Can we still benefit from VR capabilities and capture collective behaviours?

Part 3

When you start your PhD on human crowds during COVID-19 lockdown...

Example of VR replications

One Man Crowd paradigm

Part 3

One man crowd

When you start your PhD on human crowds during COVID-19 lockdown...

OMC vs. real data

Scene

Aerial view of the scene

Visualization of the waves

Lemercier et al. 2012

Our result (S2N)

OMC vs. real data

Real-world experiment

One result

Another result

OMC vs. real data

Ezaki et al. 2015

Each **point** represents final position Each **cell** is colored by local density

How to break singularities (and keep OMC)?

« Complex » interactions?

Updated OMC (with or without you)

Conclusion

What can or can't VR do for us?

Expose a large number of people to the exact same situtations

- → Help understanding variety in humans, intra or inter people
- → Help understanding the « perception-action » loop
- → Help understanding one's perception of a situation
- → Help understanding how we eventually can control crowds

VR still limited in many aspects

Not always able to convey the « context », and reproduce its effects Not easy to render physical interactions in crowds (haptics)

Social Settings and Proxemics

2 types of places according to level of symbolization and sociality (Augé, 1992)

- → Stadium :
- « Anthropological place » ,
 shared identity
- → Train station: « Nonplace », anonymous, utilitarian function

Social Settings and Proxemics

Real: higher sensitivity to proxemics norms in a non-place (more discomfort, more attempt to dissimulate their discomfort in the train station)

Virtual: Confirmation that social norms still exist in VR but no effect of social setting

What can or can't VR do for us?

There are pure « graphics-VR » questions

Modeling and simulation of virtual humans: to act and interact more naturally

Adding sound and haptics

Hybrid data to continuously record data in VR and fine-tune VR models (continuous learning)

Bonus slides

What to do when VR does not apply?
H2020 CrowdDNA project « best of »

Keeping an eye on the real world

27 > 30 LFIFFS JUNE 24

THU 27 FRI 28 SAT 29

SUN 30

AVENGED SEVENFOLD

MEGADETH

VERY SPECIAL GUEST

SLAUGHTER TO PREVAIL
ASINHELL

TOM MORELLO

KARNIVOOL Orden ogan - Lovebites + 2 bands

ZZAMAIRETSYH

MAMMOTH WVH - BLACK STONE CHERRY The dead daisies Alien Weaponry - Darken

FOO FIGHTERS

QUEENSALE STONE AGE

ROYAL BLOOD

HEART - NOVA TWINS
HIGH ON FIRE
COSMIC PSYCHOS

MAINSTAGE 01

Thank you