Bacterial swarming: experiments and modelling

Gil Ariel

Department of Mathematics Bar-Ilan University w. Avraham Be'er, BGU

a) (c) Experiment <u>Bμm</u> (e) (e) (c) Experiment (c) Expe

Two sides for bacterial swarming

An example of collective motion in nature

An example of active matter / Self-propelled particles

Dry (SPP rods): Peruani 2006 Narayan 2007

(hydrodynamic): Zheng 2013 Ryan 2013

Buhl, 2006 Review: Ariel 2015

Vicsek, Chate

Bacterial swimming

- Size: a few 1x1x3 μm
- Movement using flagella mechanical motors.
- Low Reynolds numbers
- Run and Tumble

Run times have an exponential dist. Average run time = 2 secs. Tumble: random direction.

• Chemotaxis: biased random walk Adler ('66): Bacteria adjust the length of runs according to temporal changes in conditions.

Bacterial swarming

Experiments by Avraham Be'er, Ben Gurion University

Bacillus Subtilis

Bacterial swarming

A particular mode of motion

[Kearns 2010]

- Above surfaces Approximately 2D
- Cells elongate: $\sim 5 \times 1 \times 1 \mu m$.
- Grow extra flagella.
- High density.
- Hydration layer: Surfactants. Highly viscous.
- Chemo-sensors shut down (to some extent) [Harshey 2015].

Higher bacterial conc. \neq **higher particle density**

Characterization and quantification

Understand

- Collective swarm dynamics averages, fluctuations, correlation functions topological defects, entropy
- Individuals within a swarm random walks
- Phases and Phase transitions qualitatively different physical regimes

- Underlying physics particle-particle interactions, emergence of collectivity
- Underlying biology mutants, coping with stress (e.g., antibiotics)
- Lifestyles and transitions biological internal states
- Evolutionary advantages

Characterization and quantification

Understand

- Collective swarm dynamics
 averages, fluctuations, correlation functions
 topological defects, entropy
- Individuals within a swarm random walks
- Phases and Phase transitions qualitatively different physical regimes

- Underlying physics particle-particle interactions, emergence of collectivity
- Underlying biology mutants, coping with stress (e.g., antibiotics)
- Lifestyles and transitions biological internal states

Motivation

Swarming bacteria (*Bacillus subtilis*) at different densities and aspect ratios

Characterize phases

[Be'er et al, 2020] Track all cells

Compare with [Jeckel et al, 2019] for a growing colony

Bacterial collective flow

Average speeds

- Speed increases with density The hallmark of collectivity
- WT are the fastest
- Minimal concentration for movement – different than SPPs
- Maximal concentration a jammed phase?

[Be'er et al 2019, 2020]

Correlation functions

Spatial correlations in velocity

Surface density

Density distribution

Example: Spatial variation in density

Number of bacteria in a square bin

Goal

Quantify the (ensemble) distribution of objects (points/rods/other)

Fundamental question in stat-phys: what information can you get from snapshots (e.g. gas/liquid?)

Use entropy

Curfage density a

Why entropy?

<u>At equilibrium</u>, entropy has a thermodynamic meaning $H = -\int d\mathbf{x} p(\mathbf{x}) \ln p(\mathbf{x})$

[Carnot 1824, Clausius 1865, Boltzmann 1877, Gibbs, Maxwell]

Plays a key role in phase transitions [Frenkel 1999, Kardar 2007], pattern formation [Cross 1993] and self-assembly [Sciortino 2019].

Computation: e.g. thermodynamic integration.

<u>Out of equilibrium</u>: Shannon entropy is still well defined. Computationally – a problem. Typically assuming a specific model or need dynamics

Theory:

Bialek et al PNAS 2011, Cavanna et al PRE 2014, Barre JSP 2015, Mann and Garnett Roy Soc Int 2015, Crosato PRE 2018

Estimation: Bialek et al PNAS 2011 , Cavagna PRL 2021

Estimate continuous entropy. Density $p(x), x \in \mathbb{R}^{D}$ from samples.

$$H = -\int dx p(x) \ln p(x)$$

Why is it difficult? 1D example

$$H = \underbrace{-\int_{-1}^{0} q \ln q \, dx}_{-q \ln q} \underbrace{-\int_{0}^{1} (1-q) \ln(1-q) \, dx}_{-q+O(q^2)} dx$$

A well-behaved example

Fine for Monte-Carlo-like methods. It is OK to have fewer samples in regions with a low probability

Estimate continuous entropy. Density $p(x), x \in \mathbb{R}^{D}$ from samples.

$$H = -\int dx p(x) \ln p(x)$$

Why is it difficult? 1D example

$$H = -q \ln \frac{q}{\epsilon} + O(q)$$

A small fraction *q* of the samples can be responsible for most of the entropy

Need a sufficient number of samples *in each half* to determine in which case we are facing

A continuous random variable: density $p(x), x \in \mathbb{R}^{D}$

$$H = -\int dx p(x) \ln p(x)$$

Naïve approach: partition into bins

 k^D bins

more than k^{D} samples

Curse of dimensionality

Entropy estimation methods

- Partition trees [Stowell and Plumbley 2009]
- Nearest neighbors: [Kozachenko and Leonenko 1987; Singh et al. 2003;
 Kraskov et al. 2004; Gao et al. 2017; Lord et al. 2018]
- Lossless compression [dynamical systems/biological sequences: Loewenstern 1977; Ebeling 1997; Grassberger 2002; Stat mech: Feldman and Crutchfied 2003; Melchert and Hartmann 2015; Avinery et al 2019; Martiniani et al 2019]
- Machine learning [Belghazi et al 2018]
- Iterated Gaussianization [Laparra et al 2020]
- Recursive copula splitting [Ariel and Louzoun 2020]

All approaches suffer from the curse of dimensionality Severe under-sampling of phase space

Entropy estimation

10⁹⁰ samples

also, the number of particles varies

What can we measure about the system?

What does it tell us in terms of its entropy?

A more modest goal

What can we measure about the system?

What does it tell us in terms of its entropy?

Answer: an upper bound

(The lower bound is always $-\infty$)

In other words, given a measurement (e.g., correlation function), find the maximal entropy a system can have with the measurement as a constraint.

Without assuming knowledge of the microscopic configurations

[Schneidman 2003, Shemesh 2013 and more]

Example: the structure factor

The pair correlation function

The average density (divided by $\overline{\rho}$) at position **r** (or distance *r*) from a focal particle.

Lennard-Jones fluid. Wikipedia

Example: the structure factor

Essentially the Fourier transform of the pair correlation function (+1)

$$f'(\mathbf{q}) = 1 + \bar{\rho} \int g(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}} d\mathbf{r}$$

= $\frac{1}{N} \langle \rho(\mathbf{q}) \rho(-\mathbf{q}) \rangle = \frac{1}{N} \left\langle \sum_{j,k} e^{-i\mathbf{q}(\mathbf{r}_j - \mathbf{r}_k)} \right\rangle$

Ideal gas: $S(\mathbf{q}) = N\delta(\mathbf{q}) + 1$

Directly measurable in scattering experiments

Essentially the Fourier transform of the pair correlation function (+1)

$$S(\mathbf{q}) = \frac{1}{N} \langle \rho(\mathbf{q}) \rho(-\mathbf{q}) \rangle = \frac{1}{N} \left\langle \sum_{j,k} e^{-i\mathbf{q}(\mathbf{r}_j - \mathbf{r}_k)} \right\rangle$$

The main idea:

- **Lagrange multipliers** to maximize $H = -\int p \ln p dx$
- with S(q) as constraints (1 constraint for each **q**).

To solve: use standard expansion methods to 2nd order in conjugate fields (consistent with pair-wide correlations)

[Ariel and Diamant 2020]

Essentially the Fourier transform of the pair correlation function (+1)

$$S(\mathbf{q}) = \frac{1}{N} \langle \rho(\mathbf{q}) \rho(-\mathbf{q}) \rangle = \frac{1}{N} \left\langle \sum_{j,k} e^{-i\mathbf{q}(\mathbf{r}_j - \mathbf{r}_k)} \right\rangle$$

$$h_{\text{ex}} = \frac{H - H_{\text{id}}}{N} = \frac{1}{2\langle N \rangle} \sum_{\mathbf{q}\neq 0} [\ln S(\mathbf{q}) + 1 - S(\mathbf{q})]$$

The excess entropy (compared to ideal gas) per particle.

This is the maximal entropy for all systems with this structure factor.

[Ariel and Diamant 2020], equiv. to 2nd order with [Green 1947, Hernando 1990]

Measure any pair correlation function $\Phi(x)$ also matrix-valued

Fourier transform to $\Phi(q)$

$$h_{\text{ex}} = \frac{H - H_{\text{id}}}{N} = \frac{1}{2\langle N \rangle} \sum_{\mathbf{q} \neq 0} \text{tr}[\ln \mathbf{\Phi}(\mathbf{q}) + I - \mathbf{\Phi}(\mathbf{q})]$$

The excess entropy (compared to ideal gas) per particle.

This is the (approximate) maximal entropy for any system with this correlation function

For the structure factor, see [Ariel and Diamant 2020], General result: [Sorkin et al 2023] Entropy content of correlations

A functional of correlation functions

$$h_{\text{ex}} = \frac{H - H_{\text{id}}}{N} = \frac{1}{2(2\pi)^d \overline{f}} \operatorname{tr} \int_{\mathbf{q}\neq 0} d\mathbf{q} [\ln \mathbf{\Phi}(\mathbf{q}) + I - \mathbf{\Phi}(\mathbf{q})]$$

 $CF_1 \rightarrow h_{ex1}$ - Separate contributions to the entropy $CF_2 \rightarrow h_{ex2}$ - Classify the degrees of freedom that govern $CF_3 \rightarrow h_{ex3}$ - Classify the degrees of freedom that govern a certain physical regime - Identify phase transitions

Entropy content of correlations

Three correlation functions

- Positions $\rightarrow S(\mathbf{q}) = \frac{1}{N} \langle \sum_{j,k} e^{-i\mathbf{q}(\mathbf{r}_j \mathbf{r}_k)} \rangle$
- Orientations -> $D'(\mathbf{q}) = \frac{2}{N} \left\langle \sum_{j,k} e^{-i\mathbf{q}(\mathbf{r}_j \mathbf{r}_k)} \begin{pmatrix} \cos l\theta \\ \sin l\theta \end{pmatrix} (\cos l\theta, \sin l\theta) \right\rangle$

• Mixed ->
$$M'(\mathbf{q}) = \frac{3}{N} \left(\sum_{j,k} e^{-i\mathbf{q}(\mathbf{r}_j - \mathbf{r}_k)} \begin{pmatrix} \cos l\theta \\ \sin l\theta \\ 1 \end{pmatrix} (\cos l\theta, \sin l\theta, 1) \right)$$

Mixed – Positions - Orientations = entropy of cross-correlations

Results: Swarming bacteria

Long cells (aspect ratio 19)

Discontinuous jump in entropy -> 1st order transition.

Significant contribution of cross-correlations at low densities.

Two phases: dilute stationary cells and moving clusters ("anti MIPS")

A phase diagram for bacterial swarming

In the "jammed" region

Motivation: Motility induced phase separation [Cates and Tailleur 2015]

A non-equilibrium effect

Hand-waving explanation:

- When self-propelled particles collide, they slow down.
- Expect that particles at dense regions move slower and accumulate. Positive feed-back.
- Phase separation between dense and dilute fluid phases.
- Will not occur for passive system (hence motility induced).

In swarming bacteria:

[Ariel et al, PRE 2018]

Termination of swarming = MIPS?

[Grafke et al, PRL 2017; Grobas et al, eLife 2021]

[Worlitzer et al, Sci Adv 2022] Qualitatively consistent with MIPS

But ...

Nucleation of stationary aggregates: We find Extracellular polymeric substance (EPS) Cells initiate the biofilm program.

Not purely physics! [Worlitzer et al, Sci Adv 2022]

A single cell within a swarm

We're all individuals!

- l'm not. - Shhh. Individual within a swarm

Ariel et al, Nature Comm. 2015

The set-up:

Individual within a swarm

Ariel et al, Nature Comm. 2015

Mean Square Displacement shows super-diffusion

Consistent with a Lévy Walk.

Lévy walks

Drunk walk:

A drunk walks out of a pub. He/she moves at a constant speed. Changes direction at random times.

Time between turns is independent with density f(t).
Let r(t) denote the position of the drunk at time t.

Finite variance -> Central Limit Theorem -> MSD ~ t

$$\langle |\mathbf{r}(s+t)-\mathbf{r}(s)|^2 \rangle \sim t$$

Lévy walks

Lévy Walks. Mandelbrot '60s (Lévy flight). [Shlesinger et al, J. Stat. Phys. 1982]

Time between turns has an **infinite** variance, $f(t) \sim 1/t^{1+\mu}$. Standard CLT does not hold. Obtain Lévy distributions.

$$\left< |\mathbf{r}(s+t) - \mathbf{r}(s)|^2 \right> \sim t^{\alpha}$$

Super-diffusion. $\alpha > 1$ For swarming bacteria we get 1.6

Non-Gaussian statistics.

Swarming bacteria do a Lévy walk

Lévy walks

Swarming bacteria do a Lévy walk

Related models

- Ariel et al, PRL 2017
- Zarfaty et al, PRE 2018
- Ariel and Schiff, Physica D 2020
- Berman and Mitchell, Chaos 2020
- Wagner et al 2022
- Mukherjee et al PRL 2021, 2023
- Padhan and Pandit, PRR 2023
- Singh and Chaudhuri, Nature Comm 2024

Comparing experiments with model

References comparing with swarming bacteria

Agent-based models

Micro-swimmers. Steric and/or Hydrodynamics interactions [e.g., Wensink 2012, Ryan 2016, Ariel 2018]

Continuous models

Effective coarse-grained eq. for the polarization field [e.g., Wensink 2012, Dunkel 2013, Lushi 2014, Ariel 2018; Jeckel 2018, Worlitzer 2021]

Comparing experiments with model

Agent-based models

Hydrodynamics of micro-swimmers (near a boundary) [Spagnolie and Lauga, J Fluid Mech 2012]

Stokes equation:

$$-\nabla p + \mu \Delta u = 0 \qquad \mu \\ \nabla \cdot u = 0. \qquad \mu$$

u: velocity*p*: pressure*μ*: viscosity

Singular solutions:

Force monopole Stokeslet

Near a wall: image Stokeslets/dipole. Similar to electrostatics.

Continuous models

A PDE for the velocity field/polar order parameter

$$(\partial_t + \mathbf{v} \cdot \nabla)\mathbf{v} = -\nabla p^* - (A + C|\mathbf{v}|^2)\mathbf{v} + \nabla \cdot \mathbf{E}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Material derivative
- Pressure (Lagrange multiplier for incompressibility)
- Self-propulsion
- Stress tensor (short range alignment, long range anti-alignment)

$$\nabla \cdot \mathbf{E} = -\Gamma_0 \Delta \mathbf{v} + \Gamma_2 \Delta^2 \mathbf{v}$$

Linear stability analysis.

Characteristic length scale $\Lambda = 2\pi \sqrt{2\Gamma_2/\Gamma_0}$

[Dunkel et al, PRL 2013]

Comparing experiments with model

[GA et al PRE 2018]

Velocity – Kurtosis = (Gaussian=3, larger=heavier tail)

$$\operatorname{Kurt}[X] = \operatorname{E}\left[\left(\frac{X-\mu}{\sigma}\right)^4\right] = \frac{\operatorname{E}\left[(X-\mu)^4\right]}{\left(\operatorname{E}\left[(X-\mu)^2\right]\right)^2} = \frac{\mu_4}{\sigma^4}$$

Continuous models: need to add density fluctuations [Worlitzer et al, soft matter 2021]

Topological defects in active matter

[recent reviews Giomi, PRX 2013, Bowick et al, PRX 2022]

Polar particles (with head and tail)

Look at a vector field, for example, velocity filed of the swarm

red = counter clockwise
blue = clockwise

Topological defects in active matter

[recent reviews Giomi, PRX 2013, Bowick et al, PRX 2022]

Polar particles (with head and tail)

Look at a vector field, for example, velocity filed of the swarm

look only on the direction Why? Maybe we don't know the speed

Topological defects in active matter

[recent reviews Giomi, PRX 2013, Bowick et al, PRX 2022]

Polar particles (with head and tail)

singular points in which the direction is not defined

Defects in vector fields

Only integer charges!

Comes from the fact that the field is continuous

(except @ singularities)

Defects in nematic fields

[recent reviews Giomi, PRX 2013, Bowick et al, PRX 2022]

Nematic particles (head-tail symmetry) Liquid crystals

Look at a nematic field, for example, cell orientation

+1/2 -1/2

singular points in which the direction is not defined

Only integer and half-integer charges!

Comes from the fact that the field is continuous

(except @ singularities)

If the orientation field changes in time

- 1. Defects can move
- 2. Annihilate
- 3. Created

Conservation of charge

In any close region, the total charge can Change if defect come in or go out

- Add physics (a shallow exposition) [recent reviews Giomi, PRX 2013, Bowick et al, PRX 2022]
- Defects cost elastic energy that increases with |charge|
- Interaction coulomb to leading order
- Relaxation to equilibrium -> defects annihilate and vanish
- Add activity -> spontaneous creation -> steady state
- Examples: Microtubules [Keber et al, Science 2014] Epithelial cells [Blanch-Mercader at al, PRL 2018] Cytoskeletal reconstitutions [Guillamat et al, Nat. Commun. 2017] Baceria: gliding *Myxococcus xanthus* [Copenhagen et al, Nat. Phys. 2021] *Bacillus subtilis* biofilms [Nijjer et al, Nat. Phys. 2023]

[Li et al 2019, Yashunsky et al 2024]

The bacteria are **polar** – but the dominating interactions are **nematic**

Orientation field and ±¹/₂ defects [Yashunsky et al, soft matter 2024]

[Li et al 2019, Yashunsky et al 2024]

The bacteria are **polar** – but the dominating interactions are **nematic**

Orientation field and ±¹/₂ defects [Yashunsky et al , soft matter 2024]

Orientation and Flow around defects agree with the theory of active nematic

Divergence field does not. accumulation at -1/2

[Yashunsky et al, soft matter 2024]

3D structure – thin layer (7um)

Correlations between layers – defect lines The quasi-2D picture holds [Shendruk et al 2018]

[Yashunsky et al, soft matter 2024]

Structure factors – evidence of hyperuniformity

$$S(\mathbf{q}) = \left\langle \frac{1}{N} \left| \sum_{i=1}^{N} e^{-i\mathbf{q} \cdot \mathbf{r}_{i}} \right|^{2} \right\rangle$$
$$S_{2}(\mathbf{q}) = \left\langle \frac{1}{N} \left| \sum_{i=1}^{N} \sum_{j=1}^{M} e^{-i\mathbf{q} \cdot (\mathbf{r}_{i} - \mathbf{R}_{j})} \right|^{2} \right\rangle$$

$$S_{\rho}(\mathbf{q}) = S_{\pm 1/2}(\mathbf{q})S_{-1/2}(q)/2 - S_{\pm 1/2}(\mathbf{q})$$

Slope=-2 agrees with ionic solutions at equilibrium

[Yashunsky et al, soft matter 2024]

Why defects?

Coarse-grained property – encode physical information of the microscale

- Easier to detect than single cells allow a wider field of view
- Comparison to theory
- Study spatial distribution (entropy)
- Study creation and annihilation
- Mutants
- Coupling to biology

- Avraham Be'er, Bella Ilkanaiv, Ajesh Jose, Marina Sidortsov, Victor Yashunski (Ben Gurion U)
- Shawn Ryan (CSU)
- Daniel Pearce (U Geneva)
- Daniel B. Kearns (Indiana U)
- Markus Bär, Sebastian Heidenreich (PTB)
- Haim Diamant, Avigdor Eldar, Ilana Grinberg, Benjamin Sorkin (Tel Aviv U)
- Vasco Worlitzer (TU Berlin)
- Renan Gross (Weizmann)

• Funding: ISF, DFG

Be'er and Ariel *Movement Ecology* (2019) 7:9 https://doi.org/10.1186/s40462-019-0153-9

Movement Ecology

REVIEW

A statistical physics view of swarming bacteria

Check for updates

Open Access

Avraham Be'er^{1,2*} and Gil Ariel^{3*}