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• Size: a few 1x1x3 µm

• Movement using flagella –
mechanical motors.

• Low Reynolds numbers

• Run and Tumble
Run times have an exponential dist.
Average run time = 2 secs.
Tumble: random direction.

• Chemotaxis: biased random walk
Adler (‘66): Bacteria adjust the length of runs
according to temporal changes in conditions.

Bacterial swimming



Experiments by Avraham Be’er, Ben Gurion University

Bacillus Subtilis

Bacterial swarming



A particular mode of motion
[Kearns 2010]

• Above surfaces - Approximately 2D
• Cells elongate: ~5 × 1 × 1µm.
• Grow extra flagella.
• High density.
• Hydration layer: Surfactants. Highly viscous.
• Chemo-sensors shut down (to some extent) [Harshey 2015].

Higher bacterial conc. ≠ higher particle density

Bacterial swarming



Characterization and quantification

• Collective swarm dynamics
averages, fluctuations, correlation functions

topological defects, entropy

• Individuals within a swarm
random walks 

• Phases and Phase transitions
qualitatively different physical regimes

Understand

• Underlying physics
particle-particle interactions, 
emergence of collectivity

• Underlying biology
mutants, coping with stress (e.g., antibiotics)    

• Lifestyles and transitions
biological internal states

• Evolutionary advantages

Goals
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Motivation

Swarming bacteria 
(Bacillus subtilis)
at different densities 
and aspect ratios

Characterize phases

[Be’er et al, 2020]
Track all cells

Compare with
[Jeckel et al, 2019]
for a growing colony



• Speed increases with density
The hallmark of collectivity

• WT are the fastest

• Minimal concentration for 
movement – different than SPPs

• Maximal concentration –
a jammed phase?

Average speeds

[Be’er et al 2019, 2020]

Bacterial collective flow



Correlation functions

Spatial correlations in velocity

Decay exponentially with
a characteristic length scale



Density distribution

Long cells: 
α = 13, 19

Single 
population

Two 
populations

Short cells: 

α = 5.5, 
7 (WT)

Example: Spatial variation in density



Goal

Quantify the (ensemble) 
distribution of objects 
(points/rods/other)

Fundamental question
in stat-phys:
what information can

you get from snapshots
(e.g. gas/liquid?)

Use entropy 



Thermodynamics

Why entropy?

At equilibrium, entropy has a thermodynamic meaning

𝐻 = −න𝑑𝐱𝑝 𝐱 ln 𝑝 𝐱

[Carnot 1824, Clausius 1865, Boltzmann 1877, Gibbs, Maxwell]

Plays a key role in phase transitions [Frenkel 1999, Kardar 2007], 
pattern formation [Cross 1993] and self-assembly [Sciortino 2019].

Computation: e.g. thermodynamic integration.

Out of equilibrium: Shannon entropy is still well defined.
Computationally – a problem.



Entropy and collective motion

Typically assuming a specific model or need dynamics

Theory: 
Bialek et al PNAS 2011 , Cavanna et al PRE 2014, Barre JSP 2015,
Mann and Garnett Roy Soc Int 2015, Crosato PRE 2018

Estimation:
Bialek et al PNAS 2011 , Cavagna PRL 2021



Differential entropy

Estimate continuous entropy. Density 𝑝 𝑥 , 𝑥 ∈ ℝ𝐷

from samples.

𝐻 = −න𝑑𝑥𝑝 𝑥 ln 𝑝 𝑥

Why is it difficult? 1D example

0 1

1 0

2ln ( )

ln (1 ) ln(1 )

q q q O q

H q qdx q q dx
−

− − +

= − − − − 

A well-behaved example

Fine for Monte-Carlo-like methods. 
It is OK to have fewer samples in 
regions with a low probability



Differential entropy

Estimate continuous entropy. Density 𝑝 𝑥 , 𝑥 ∈ ℝ𝐷
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𝐻 = −න𝑑𝑥𝑝 𝑥 ln 𝑝 𝑥
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)ln (
q
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A small fraction q of the samples
can be responsible for most of the 
entropy

1 ln
q

H q= −

2 ( )H O q=



Differential entropy

Need a sufficient number of samples in each half
to determine in which case we are facing

H~0 H<<0



Differential entropy

A continuous random variable: density 𝑝 𝑥 , 𝑥 ∈ ℝ𝐷

𝐻 = −න𝑑𝑥𝑝 𝑥 ln 𝑝 𝑥

Naïve approach: partition into bins

kD bins

more than kD samples

Curse of dimensionality

k bins in each side



Entropy estimation methods

- Partition trees [Stowell and Plumbley 2009]

- Nearest neighbors: [Kozachenko and Leonenko 1987; Singh et al. 2003;

Kraskov et al. 2004;  Gao et al. 2017; Lord et al. 2018]

- Lossless compression [dynamical systems/biological sequences: 

Loewenstern 1977; Ebeling 1997; Grassberger 2002; Stat mech: Feldman and 
Crutchfied 2003; Melchert and Hartmann 2015; Avinery et al 2019; 
Martiniani et al 2019]

- Machine learning [Belghazi et al 2018]
- Iterated Gaussianization [Laparra et al 2020]

- Recursive copula splitting [Ariel and Louzoun 2020]

All approaches suffer from the curse of dimensionality
Severe under-sampling of phase space



Entropy estimation

D=100 cells x (x, y, angle)
bin per dim ≥ 2

samples per bin ≥ 1

1090 samples

also,
the number of 
particles varies



A more modest goal

What can we measure about the system?

What does it tell us in terms of its entropy?



What can we measure about the system?

What does it tell us in terms of its entropy?

Answer: an upper bound
(The lower bound is always −∞)

In other words, given a measurement (e.g., correlation function),
find the maximal entropy a system can have with the measurement 
as a constraint.

Without assuming knowledge of the microscopic configurations

[Schneidman 2003, Shemesh 2013 and more]

A more modest goal



Example: the structure factor

The pair correlation function
The average density (divided by ҧ𝜌)
at position r (or distance r) from a focal particle.

Lennard-Jones fluid. Wikipedia



Example: the structure factor

Points: experimental data 
Line: MC for 𝑟−4 potential 

Theory of Simple Liquids, Hansen

Essentially the Fourier transform of the 
pair correlation function (+1)

𝑆 𝐪 = 1 + ҧ𝜌න𝑔 𝐫 𝑒−𝑖𝐪𝐫𝑑𝐫

= 1
𝑁 𝜌 𝒒 𝜌 −𝒒 = 1

𝑁 ෍

𝑗,𝑘

𝑒−𝑖𝐪(𝐫𝑗−𝐫𝑘)

Ideal gas: 𝑆 𝐪 = 𝑁𝛿 𝐪 + 1

Directly measurable in scattering experiments



Example: the structure factor

Essentially the Fourier transform of the pair correlation function (+1)

𝑆 𝐪 = 1
𝑁
𝜌 𝒒 𝜌 −𝒒 = 1

𝑁
෍

𝑗,𝑘

𝑒−𝑖𝐪(𝐫𝑗−𝐫𝑘)

The main idea:

Lagrange multipliers to maximize 𝐻 = 𝑝ln𝑝𝑑𝑥׬−

with S(q) as constraints (1 constraint for each q).

To solve: use standard expansion methods to 2nd order in conjugate 
fields (consistent with pair-wide correlations)

[Ariel and Diamant 2020]



Example: the structure factor

Essentially the Fourier transform of the pair correlation function (+1)

𝑆 𝐪 = 1
𝑁
𝜌 𝒒 𝜌 −𝒒 = 1

𝑁
෍

𝑗,𝑘

𝑒−𝑖𝐪(𝐫𝑗−𝐫𝑘)

The excess entropy (compared to ideal gas) per particle.

This is the maximal entropy for all systems with this structure factor.

[Ariel and Diamant 2020], equiv. to 2nd order with [Green 1947, Hernando 1990]

ℎex =
𝐻 − 𝐻id

𝑁
=

1

2 𝑁
෍

𝐪≠0

[ln 𝑆(𝐪) + 1 − 𝑆(𝐪)]



Major generalization

Measure any pair correlation function 𝚽(𝐱) also matrix-valued

Fourier transform to 𝚽(𝐪)

The excess entropy (compared to ideal gas) per particle.

This is the (approximate) maximal entropy
for any system with this correlation function

For the structure factor, see [Ariel and Diamant 2020], 
General result: [Sorkin et al 2023]

ℎex =
𝐻 −𝐻id

𝑁
=

1

2 𝑁
෍

𝐪≠0

tr[ln𝚽(𝐪) + 𝐼 −𝚽(𝐪)]



Entropy content of correlations

A functional of correlation functions

ℎex =
𝐻 − 𝐻id

𝑁
=

1

2 2𝜋 𝑑 ҧf
trන

𝐪≠0

𝑑𝐪 ln𝚽(𝐪) + 𝐼 −𝚽(𝐪)

CF1 ->  hex1

CF2 ->  hex2

CF3 ->  hex3

- Separate contributions to the entropy

- Classify the degrees of freedom that govern 
a certain physical regime

- Identify phase transitions



Entropy content of correlations

Three correlation functions

• Positions  -> S 𝐪 = 1

𝑁
σ𝑗,𝑘 𝑒

−𝑖𝐪(𝐫𝑗−𝐫𝑘)

• Orientations -> Dl(q)=2

𝑁
σ𝑗,𝑘 𝑒

−𝑖𝐪(𝐫𝑗−𝐫𝑘) cos𝑙𝜃
sin𝑙𝜃

(cos𝑙𝜃, sin𝑙𝜃)

• Mixed ->  Ml(q)=3

𝑁
σ𝑗,𝑘 𝑒

−𝑖𝐪(𝐫𝑗−𝐫𝑘)
cos𝑙𝜃
sin𝑙𝜃
1

(cos𝑙𝜃, sin𝑙𝜃, 1)

Mixed – Positions - Orientations = entropy of cross-correlations



Results: Swarming bacteria

Long cells (aspect ratio 19)

Discontinuous jump in entropy -> 1st order transition.
Significant contribution of cross-correlations at low densities.
Two phases: dilute stationary cells and moving clusters (“anti MIPS”)

corr length

[Sorkin 2023]



[Be’er et al 2020]

“Dry” dynamics

“Wet” dynamics

A phase diagram for bacterial swarming



]Worlitzer et al, 
Science advances 2022]

In the “jammed” 
region

Termination of swarming



Motivation: Motility induced phase separation
[Cates and Tailleur 2015]

A non-equilibrium effect
Hand-waving explanation: 
- When self-propelled particles collide, they slow down. 
- Expect that particles at dense regions move slower and 

accumulate. Positive feed-back.

Termination of swarming



In swarming bacteria:

Termination of swarming = MIPS?
[Grafke et al, PRL 2017; Grobas et al, eLife 2021]

Termination of swarming

[Ariel et al, PRE 2018]



[Worlitzer et al, Sci Adv 2022]

Qualitatively consistent with MIPS

Termination of swarming



Not purely physics! [Worlitzer et al, Sci Adv 2022]

But …
Nucleation of stationary aggregates: 
We find Extracellular polymeric substance (EPS)
Cells initiate the biofilm program. 

Termination of swarming



We’re all individuals!

A single cell within a swarm

movies/Life Of Brian (1979) - clip You're all individuals.mp4


Ariel et al, Nature Comm. 2015

The set-up:

Individual within a swarm



Ariel et al, Nature Comm. 2015

Mean Square Displacement shows super-diffusion

Consistent with a Lévy Walk.

Individual within a swarm



Drunk walk:
A drunk walks out of a pub.
He/she moves at a constant speed.
Changes direction at random times.

Time between turns is independent
with density f(t).

Let r(t) denote the position of the drunk
at time t.

Finite variance -> Central Limit Theorem -> MSD ~ t

Lévy walks



Lévy Walks. Mandelbrot ‘60s (Lévy flight).
[Shlesinger et al, J. Stat. Phys. 1982]

Time between turns has an infinite variance, 𝑓 𝑡 ~1/𝑡1+𝜇.
Standard CLT does not hold. Obtain Lévy distributions.

Super-diffusion. 𝜶 > 𝟏
For swarming bacteria we get 1.6

Non-Gaussian statistics.

Lévy walks



𝑃(Δ𝑥, Δ𝑡)
scale: Δ𝑡1/𝛽𝑃(Δ𝑥Δ𝑡−1/𝛽 , Δ𝑡)

α-stable law with parameter 𝛽

Lévy walks 

Swarming bacteria do a Lévy walk



Related models

• Ariel et al, PRL 2017
• Zarfaty et al, PRE 2018
• Ariel and Schiff, Physica D 2020
• Berman and Mitchell, Chaos 2020
• Wagner et al 2022
• Mukherjee et al PRL 2021, 2023
• Padhan and Pandit, PRR 2023
• Singh and Chaudhuri, Nature Comm 2024

Swarming bacteria do a Lévy walk



References comparing with swarming bacteria

Agent-based models
Micro-swimmers. 
Steric and/or Hydrodynamics interactions
[e.g., Wensink 2012 , Ryan 2016, Ariel 2018] 

Continuous models
Effective coarse-grained eq. for the polarization field
[e.g., Wensink 2012, Dunkel 2013, Lushi 2014, Ariel 2018; Jeckel 2018,

Worlitzer 2021]

Comparing experiments with model



Agent-based models
Hydrodynamics of micro-swimmers (near a boundary)
[Spagnolie and Lauga, J Fluid Mech 2012]

Stokes equation:

Singular solutions:

Force monopole                                   Force dipole
Stokeslet

Near a wall: image Stokeslets/dipole. Similar to electrostatics.

u: velocity
p: pressure
µ: viscosity

Comparing experiments with model



A PDE for the velocity field/polar order parameter

[Dunkel et al, PRL 2013]

Linear stability analysis.

Characteristic length scale Λ = 2𝜋 2Γ2/Γ0

𝛻 ⋅ 𝐄 = −Γ0Δ𝐯 + Γ2Δ
2𝐯

Continuous models



[GA et al PRE 2018]

Velocity – Kurtosis = (Gaussian=3, larger=heavier tail)

Comparing experiments with model

Continuous models: need to add density fluctuations [Worlitzer et al, soft matter 2021]



Topological defects in active matter

[recent reviews Giomi, PRX 2013, Bowick et al, PRX 2022]

Polar particles (with head and tail)

Look at a vector field, for example, velocity filed of the swarm

red = counter clockwise
blue = clockwise



Topological defects in active matter

[recent reviews Giomi, PRX 2013, Bowick et al, PRX 2022]

Polar particles (with head and tail)

Look at a vector field, for example, velocity filed of the swarm

look only on 
the direction
Why? Maybe we 
don’t know the speed



Topological defects in active matter

[recent reviews Giomi, PRX 2013, Bowick et al, PRX 2022]

Polar particles (with head and tail)

Look at a vector field, for example, velocity filed of the swarm

singular points in 
which the direction
is not defined



Defects in vector fields

Only integer charges!
Comes from the fact that the field is continuous 

(except @ singularities)



[recent reviews Giomi, PRX 2013, Bowick et al, PRX 2022]

Nematic particles (head-tail symmetry) Liquid crystals

Look at a nematic field, for example, cell orientation

singular points in 
which the direction
is not defined

Defects in nematic fields

Only integer and half-integer charges!
Comes from the fact that the field is continuous 

(except @ singularities)



If the orientation field changes in time

1. Defects can move

2.    Annihilate

3.    Created

Topological defects

Conservation of charge
In any close region, the total charge can
Change if defect come in or go out



Add physics (a shallow exposition) 
[recent reviews Giomi, PRX 2013, Bowick et al, PRX 2022]

Defects cost elastic energy that increases with |charge|

Interaction – coulomb to leading order

Relaxation to equilibrium -> defects annihilate and vanish

Add activity -> spontaneous creation -> steady state

Examples:
Microtubules [Keber et al, Science 2014]

Epithelial cells [Blanch-Mercader at al, PRL 2018]

Cytoskeletal reconstitutions [Guillamat et al, Nat. Commun. 2017]

Baceria: gliding Myxococcus xanthus [Copenhagen et al, Nat. Phys. 2021]

Bacillus subtilis biofilms [Nijjer et al, Nat. Phys. 2023]

Topological defects



[Li et al 2019, Yashunsky et al 2024]

The bacteria are polar – but the dominating interactions are nematic

Orientation field and ±½ defects [Yashunsky et al, soft matter 2024]

Topological defects



[Li et al 2019, Yashunsky et al 2024]

The bacteria are polar – but the dominating interactions are nematic

Orientation field and ±½ defects [Yashunsky et al , soft matter 2024]

Topological defects



[Yashunsky et al, soft matter 2024]

Orientation and Flow around defects
agree with the theory of 
active nematic

Divergence field does not.
accumulation at -1/2
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Topological defects



3D structure – thin layer (7um)

Correlations between layers – defect lines 
The quasi-2D picture holds [Shendruk et al 2018]

Topological defects

[Yashunsky et al, soft matter 2024]



Structure factors – evidence of hyperuniformity

Slope=-2 agrees with ionic 
solutions at equilibrium

Topological defects

[Yashunsky et al, soft matter 2024]



Why defects?
Coarse-grained property – encode physical information

of the microscale

• Easier to detect than single cells –
allow a wider field of view

• Comparison to theory
• Study spatial distribution (entropy)
• Study creation and annihilation
• Mutants
• Coupling to biology

Topological defects
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