

Collective fish swimming dynamics: insights from laboratory experiments

Ramiro Godoy-Diana PMMH Laboratory CNRS, ESPCI Paris-PSL, Sorbonne Université, Université Paris-Cité

blog.espci.fr/ramiro/

Collective Motions of Animals and Robots, Cargèse, May 27 – 31, 2024

2027? ESPCI Paris renovation project 2018-2023

PMMH lab temporarily relocated at the Sorbonne Université Jussieu campus

Palais de Congres Paris La Defense Palais des Congres Paris Arc de Tromphe Portadero Porta de Versalles Exhibition Park

BIOMIMetics and Fluid-Structure Interaction

RAMIRO GODOY-DIANA (CNRS) & BENJAMIN THIRIA (UNIVERSITÉ PARIS CITÉ)

www.pmmh.espci.fr/Biomimetics-and-Fluid-Structure

10⁹ - 10¹⁰ individuals

Collective motion: a definition

- Large number of similar self-propelled agents
- Interactions governed by « social » rules
- Emergence of complex collective behaviour on large time and space scales

Multidisciplinarity of collective motions studies

Perez-Estay (2023)

E. Coli 10⁻⁴ m mulated boids eindelepeodexi

Biology

Computer science

... and on YouTube

225 k vues • il y a 4 jours

Fouloscopie 📀

Nouveau Sous-titres

Reynolds (1986), Vicsek et al. (PRL, 1995) Deseigne et al. (Soft Matter, 2012)

Physics

Comment fonctionne un banc de poissons ? [EN 5 NIVEAUX DE DIFFICULTÉ]

Pensez à vous abonner et à activer la cloche pour ne pas rater mes futures vidéos Pour soutenir la chaîne : 💽 sur Tipeee ...

Collective motion

PHYSICAL PARALLELS

Fluid-like behaviour

Bain, Bartolo (Science, 2019)

Gomez-Nava et al. (Nat. Phys., 2023)

Stochastic excitable systems

Faster-is-slower

Garceanez ain (Stal. Rep D2,023) 4)

Today's starting point

The interaction between neighbouring swimmers constitutes the fabric of the very rich collective dynamics that is observed in a fish school in nature.

Video: Blue World Academy

What model experiment?

Depends on the question that you ask... From the physics of locomotion point of view, a usual question has been whether there is a hydrodynamic advantage of swimming in

Weihs' idealized 2D fish school -> The diamond-shaped pattern (Weihs, *Nature* 1973)

Figure from: Liao, *Phil. Trans. Roy. Soc. B* (2007)

What model experiment? Depends on the question that you ask...

How do fish school?

Vision lacksquare

Hydrodynamic interaction •

Chemical cues \bullet

Partridge et al. 1980, McKee et al. 2021

Pitcher 1976, Filella et al. 2018

Is there a hydrodynamic advantage of swimming in schools?

Fish swimming against the tidal flood current (Boyardville Port, lle d'Oléron)

Two kinds of model experiment...

1. Swimming against the flow

STATION KEEPING IN THE LABORATORY FRAME

2. The free swimming arena

Collective motion and interactions

IN SCHOOLS OF RED NOSE TETRAFISH (HEMIGRAMMUS RHODOSTOMUS)

A model organism

Red nose tetrafish

3.5 - 4 cm

Approach

Field experiments — complex, difficult to interpret, low reproducibility

How do **perturbations** of the environment influence collective motion ?

- Theory needs experimental validation
- This work: Controlled lab experiments on live animals

Outline

Part 1 The minimal fish school

Part 2 Illuminance-tuned collective motion

Part 3 Confinement-driven state transitions

Conclusions and perspectives

The minimal fish school

The swimming channel experiment

The swimming channel experiment (the old one)

A closed loop water channel with a shallow test section

Intesaaf Ashraf (circa 2017)

Swimming kinematics: Strouhal number

As the swimming velocity increases the Strouhal number tends to lower values, in the range of those corresponding to efficient swimming

A robust pattern!

Maybe vision first, and then hydrodynamics...

...or a passive mechanism?

Vortex phase matching Li et al. *Nature Comms.* 2020

Synchronised swimming

In the experiment, fish tend to synchronize at higher speed.

NS

Schools with more fish

- Need to track the position in 3D

Top view camera

3D trajectories of each fish are recovered using a stereoscopic camera system and the Direct Linear Transformation method (DLT) (see Hedrick *Bioinsp. Biomim.* 2008).

3D Trajectory Recovering

Nearest neighbours distances (NND) and angles

Schooling Patterns

statistics over 200 runs

Global Swimming Performance

tail beat amplitude

Global Swimming Performance

tail beat amplitude

- Performance is always better for fish swimming within a school
- This gain increases with swimming speed, giving an advantage to the side by side configuration vs. the diamond-like pattern

DIAMOND-SHAPED PATTERN AT $U \approx 0.8$ BL/s

Fish in side-by-side configuration (high swimming speed) are synchronized with their two nearest neighbors

SIDE-BY-SIDE (PHALANX) PATTERN AT U≈4 BL/s

Summary

- Low swimming speed fish schools are characterized by a spread-out diamond-like pattern and independent kinematics with no strong difference compared to single fish
- High swimming velocities correspond to highly synchronized swimming in a phalanx pattern
- The rate of synchronization seems to be correlated with the global efficiency of the school

Synchronization and collective swimming patterns in fish (*Hemigrammus bleheri*)

rsif.royalsocietypublishing.org

I. Ashraf¹, R. Godoy-Diana¹, J. Halloy², B. Collignon² and B. Thiria¹

Ashraf et al. PNAS | September 5, 2017 | vol. 114 | no. 36 | 9599–9604

How can we examine the underlying fluid dynamic mechanisms?

Option 1: Numerical simulations

PLOS ONE 14(8): e0215265, 2019

RESEARCH ARTICLE

On the energetics and stability of a minimal fish school

Gen Li¹*, Dmitry Kolomenskiy¹*, Hao Liu², Benjamin Thiria³, Ramiro Godoy-Diana³

cost of transport for the two fish system

How can we examine the underlying fluid dynamic mechanisms?

Option 2: A model experiment

Two independent foils swimming side-by-side

Two independent foils swimming side-by-side

In-phase (IP)

Out-of-phase (OP)

Self-propelled swimming velocity

Particle Image Velocimetry (PIV)

Particle Image Velocimetry (PIV)

Single swimmer

In-phase (IP)

Out-of-phase (OP)

Time average of the kinetic energy

Out-of-phase: the symmetric vortex shedding recalls the propulsive mechanisms found in nature in axisymmetric animals such as squid or jellyfish: a coherent jet whose alignement determines the swimming velocity.

In-phase: the average propulsive jet is much more spread laterally, much of the momentum flux directed laterally, so not contributing to the propulsion.

43

Part 1

In summary

- The preference of fish for schooling patterns where nearest neighbors are close to each other and their kinematics are synchronized makes sense hydrodynamically even in a two-dimensional physical interpretation.
- The jetting phenomenon observed with the model experiment is in favour of out-of-phase synchronization.

Article **On the Fluid Dynamical Effects of Synchronization in Side-by-Side Swimmers**

Ramiro Godoy-Diana * , Jérôme Vacher, Veronica Raspa † 💿 and Benjamin Thiria 🍩

Biomimetics, 4(4), 77. (In the Special issue "Fluid Dynamic Interactions in Biological and Bioinspired Propulsion", Editors K. W. Moored and G. V. Lauder)

Illuminance-tuned collective motion

Baptiste Lafoux

Jeanne Moscatelli Lafoux, Moscatelli, Godoy-Diana, & Thiria (2023) Commun. Bio.

Sensory mechanisms of schooling

HOW DO FISH SCHOOL ?

Partridge et al. (1980), McKee et al. (2021)

What is the influence of light on fish schooling?

Hydrodynamic sensing

Pitcher (1976), Faucher et al. (2010)

also: Chemo-olfactory, mechanosensory cues, electric signals, ...

Experimental setup and procedure

Free swimming setup

Measured quantities

FastTrack Gallois, Candelier (PLoS Comp. Bio., 2019)

Schooling parameters Milling

$$\mathcal{M} = \frac{1}{N} \left| \sum_{\text{fish}} \frac{\mathbf{v} \times \mathbf{r}}{|\mathbf{v}||\mathbf{r}|} \right|$$

Polarization

 $\mathcal{P} =$

• Distances

NN-D (nearest neighbor) II-D (inter-individual) \rightarrow average distance

A typical experimental result

Illuminance controls the collective state

AND THE TOPOLOGY OF THE GROUP

Conclusion on illuminance

WHAT DID WE LEARN?

- lateral line sensing is here insufficient to school
- order parameters (= intensity of schooling) scale with illuminance
- fish adapt the topology of the school as illuminance increases

By gradually altering vision, we were able to trigger a collective state transition

Perspective What is the relationship light / vision ?

Perspective — light/vision

NUMERICAL SIMULATIONS - EXTENSION OF THE CUCKER-SMALE MODEL

$$F_{i}^{\text{prop}} = \frac{1}{\tau} \left(1 - |\psi_{i}|^{2} / \psi_{0}^{2} \right) \psi_{i} \qquad \text{Auto-p}$$

$$F_{i}^{\text{att}} = a \sum_{j \in \text{visible}} \frac{r_{ij}}{|r_{ij}|} - \frac{R_{a}^{2} r_{ij}}{|r_{ij}|^{3}} \qquad \text{Attrace}$$

$$F_{i}^{\text{ali}} = -J \sum_{j \in \text{visible}} \psi_{i} - \psi_{j} \qquad \text{Align}$$

Niwa (J. Theor. Biol., 1994)

Nastassia Pouradier Duteil (LJLL)

propulsion

action -Ision

What could be modified by light

- interaction range
- interaction angle
- topological interaction distance

ment

Perspective — light/vision

NUMERICAL SIMULATIONS — N = 50 AGENTS

 $\tau = 0.02 | J = 0.05$

$$\tau = 1 | J = 0.05$$

 $\tau = 1 | J = 0.3$

Confinement-driven state transitions

Baptiste Lafoux

Paul Bernard

Lafoux, Bernard, Thiria, & Godoy-Diana (2023) Under review

Confinement

What is the influence of confinement on collective state transition?

 $D \approx L$

Experimental setup

Movable partition wall

$S = [0.25, 0.5, 1] \text{ m}^2$

A typical result — bistable state

3

N = 30 fish $S = 1 \, {\rm m}^2$

Experimental conditions

4

stability

Role of the school size N

N = 10

N = 30

Polarized state

Role of the swimming area S

$S = 1 \text{ m}^2$

0 min

$S = 0.5 \, \text{m}^2$

$S = 0.25 \text{ m}^2$

Polarized state

15 min

Milling state

A state diagram

Role of **confinement density**?

Confinement density $\rho = N/S$ controls the transition

Fraction of time in milling state

Each (N, S) = 3 replicates 77 experiments (15')

Fraction of time in polarized state

A simple 2-states model

Role of the aspect ratio AR

1 m

AR **= 1**

N = 50 fish

>> ×10

Conclusion on confinement

- $\rho = N/S$ shapes the $\mathcal{P} \leftrightarrow \mathcal{M}$ transition statistics
- The shape of the swimming area is also key
- Walls/confinement is a crucial parameter in collective state transition

Confinement is able to trigger collective state transition, N and S have an comparable role

Perspective How is a school confined in the wild ? Is this state transition useful ?

Perspective — Confinement and predation

Whales bubble-net hunting

University of Hawaii

 \rightarrow Bistability (criticality) can be an advantage

Is « predator confinement » of the same as wall confinement ?

Dolphins mud rings

Ramos et al. (Marine Mammal Science, 2022)

General ²³ conclusion⁴ ¹⁷

5

6

2

0

29

46-49 47 41 45 43 38 39 35 35 30 432 33 32

V24 \$25

19

x1

¥

18

132

Conclusion

Continuous collective state transitions & school organization are influenced:

- by an **imposed external flow** (hydrodynamics)
- by altering inter-individual interactions (vision)
- by altering **domain boundaries** (confinement)

 \rightarrow offers novel ingredients for **modelling interactions** in **collective motion**

How do **perturbations** of the environment influence **collective motion**?

125

250

1250

1750+

Densities [fish/m²]