
Paradoxical phenomena in crowd 
motion
B. Maury

Laboratoire de Mathématiques d’Orsay& DMA, Ecole Normale Supérieure

With S. Faure, A. Roudneff-Chupin, F. Santambrogio, J. Venel 

762   A. Garcimartín et al.  /  Transportation Research Procedia   2  ( 2014 )  760 – 767 

 

Fig. 1. Construction of an spatio-temporal diagram. (a) Picture taken inside the room. (b) Frame from the recording shot just after the door, 
showing the sampling line. (c) A portion of the diagram, where the centroids of the red hats worn by volunteers have been detected and marked 
(white circles). 

2. Experimental procedures 

The experiments took the form of evacuation drills. The room used is an indoor gym with a stand in the first floor 
that provides a convenient observation point just above the door. As we wanted a smaller exit than the existing one, 
we reduced the doorway width to 75 cm by placing wood planks at the sides, which were in turn covered with 
protective foam to avoid bruises. The door led to a wider corridor (3 m wide), and at its end another space was used 
as an assembly point. Standard video surveillance cameras were placed in zenithal position over the door (pointing 
downwards), both inside the room and outside (in the corridor).  

A total of 85 students in the 4th year of the School of Architecture at the University of Navarra volunteered to 
perform these exercises. They are boys and girls about 22 years old. They were told to wear dark clothes and each 
person was given a red hat. In this way, we smoothed the way for the subsequent image processing. In order to 
manage the tests, and to control the procedures, four professors, two technicians and four graduate students were 
also present. The managing staff all carried wearable radio devices allowing two-way communication. Apart from 
the image acquisition cameras, other surveillance cameras were also used to monitor the tests. A control point was 
established on the first floor stand, from where the head supervisor gave orders by radio to the managing staff. 
Audible signals for the volunteers were arranged in order to start and to stop the tests. An emergency stop was also 
planned to be issued whenever asked for by participants or managers (for instance, a few inconsequential falls of a 
participant caused some tests to be interrupted). Dry runs were performed beforehand until everybody was at ease 
with the procedure. The evacuation drills took place safely and uneventfully. 
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Faster is Slower Effect in natural phenomena

For general systems : counter-effective increase of the forcing term
(possibly above a certain threshold)

Examples in other contexts

The outflow is induced by application of a positive pressure.  
This extra pressure in the parenchyma tends to reduce the diameter of the branches, 
thus harming, and possibly stopping, the expiration process 
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Faster is Slower Effect

Hurtling Droplet 



A simple frictional system
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Remark : why is it not so trivial to reproduce ? 
Consider a general class of models : 

Where U* (parameter) quantifies the eagerness  of people to exit a room

Faster is faster effect 
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Assume                                                 is positively 1- homogeneous

Faster 

(The « movie » is accelerated)

Faster is Slower Effect in crowd motion modeling
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Chapter 3

Social force model, native and

overdamped forms

3.1 Social force model

3.1.1 Social force model: assumptions and actual behavior

The most popular microscopic model of pedestrian motion was proposed
in [Helbing et al. (1995)]. In its initial version, it identifies pedestrian
with inertial particles submitted to forces. If one denotes by xi(t) ∈ R2

the position of individual i, for i = 1, . . . , N , at time i, and by ui = ẋi its
velocity, the model is based on Newton’s law :

mi
dui

dt
=

mi

τ
(Ui − ui) +

∑

j ̸=i

fij +
∑

k

fw
ik, (3.1)

where

• mi is the mass of individual i,
• Ui is the desired velocity, so that the first term of the right-hand side
encodes a force (that corresponds to the motive force of i) which tends
to relax to the desired velocity with a characteristic time τ .

• fij is the force “exerted” by individual j on i (and fw
ik is the force

exerted by obstacle k on i).

The latter notion is the core of the model, and calls for some comments.
In case of high congestion, this force may actually corresponds to a physical
interaction force. Yet, when the distance between individuals (considered as
finite size objects) is positive, the effect that is represented by this terms re-
sults from a complex process: i sees j (possibly anticipating his behaviour),
and takes the decision to alter its own trajectory, typically to preserve a
certain distance with j (see Section 8.1). This overall process, which is
far from being mechanical in nature, is encoded in Helbing’s model by fij ,

25

Social force model  :  

Reproduces the FiS effect with an additional friction term 

Faster is Slower Effect in crowd motion modeling
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Von Neumann Moore

Fig. 5.1: Cellular automata

dividual moves are made sequentially, it simply means that a cell
which is already occupied is not considered as a possible destination
(see Fig. 5.1, center or right, the particle cannot move upward be-
cause the cell is already occupied). In more sophisticated versions
of the model, desired updates are computed simultaneously, which
is likely to lead to conflicts (i.e. two or more particles targeting the
same cell), and those conflicts are resolved according to predeter-
mined rules.

(b) Long range interactions. In order to model some sort of long range
interaction, a Dynamic Floor Field (DFF) is sometimes added to
the aforementioned SFF. It can be used to model the tendency of
pedestrians to follow the overall motion of the crowd (see e.g.[Schad-
schneider (2001)]). In that case it corresponds to a virtual trace left
by the pedestrians themselves, and obeys its own dynamics, namely
diffusion and decay. Note that the very same term of DFF is used by
other authors (see e.g. [Hartmann et al. (2014)]) to implement the
tendency to avoid overcrowded areas. In this setting, one considers
that the speed of the pedestrian depends on the local density, and
this field of speeds over the room is used to determine a “modified
distance field”, which accounts for current crowed areas, in the spirit
on the approach presented in Section 7.1.

5.2 Algorithms

This general philosophy has been instantiated in many ways by various
authors. It has also been followed to build industrial softwares, based on
ingredients that are generally not made public. Recognizing the arbitrary

Again, friction makes it work: in case of a conflict, there is a non-zero 
probability  that no competitor moves

Faster is Slower Effect in crowd motion modeling
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The experiments took the form of evacuation drills. The room used is an indoor gym with a stand in the first floor 
that provides a convenient observation point just above the door. As we wanted a smaller exit than the existing one, 
we reduced the doorway width to 75 cm by placing wood planks at the sides, which were in turn covered with 
protective foam to avoid bruises. The door led to a wider corridor (3 m wide), and at its end another space was used 
as an assembly point. Standard video surveillance cameras were placed in zenithal position over the door (pointing 
downwards), both inside the room and outside (in the corridor).  

A total of 85 students in the 4th year of the School of Architecture at the University of Navarra volunteered to 
perform these exercises. They are boys and girls about 22 years old. They were told to wear dark clothes and each 
person was given a red hat. In this way, we smoothed the way for the subsequent image processing. In order to 
manage the tests, and to control the procedures, four professors, two technicians and four graduate students were 
also present. The managing staff all carried wearable radio devices allowing two-way communication. Apart from 
the image acquisition cameras, other surveillance cameras were also used to monitor the tests. A control point was 
established on the first floor stand, from where the head supervisor gave orders by radio to the managing staff. 
Audible signals for the volunteers were arranged in order to start and to stop the tests. An emergency stop was also 
planned to be issued whenever asked for by participants or managers (for instance, a few inconsequential falls of a 
participant caused some tests to be interrupted). Dry runs were performed beforehand until everybody was at ease 
with the procedure. The evacuation drills took place safely and uneventfully. 
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Alternative standpoint, an underlying bizarre Laplace operator

Faster is Slower Effect



A granular (purely selfish) model (with J. Venel) 

Initially developped to handle collisions in fluid grain simulations



N individuals, centered at 

Congested

transport

B. Maury Application to crowd motion

Consider N individuals, identified to rigid discs centered at q1, q2, . . ., qN ∈ R
2.

Set of feasible configurations :

K = {q ∈ R
2N ,Dij(q) = |qj − qi|− 2r ≥ 0 ∀i ̸= j}.

K is not convex, but it can be shown to be prox-regular.

Spontaneous velocity :

U = (U1, . . . ,UN),

Evolution model
dq

dt
+ ∂IK(q) ∋ U.
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Spontaneous velocities
Congested

transport

B. Maury Application to crowd motion
Alternative formulation :

u =
dq

dt
= PCq U,

where Cq is the cone of feasible velocities.

Cq =
{

v ∈ R
2N , Dij(q) = 0 ⇒ Gij · v ≥ 0

}
,

where Gij = ∇Dij.

It admits a saddle-point formulation

∣∣∣∣∣∣∣

u −
∑

i∼j

pij Gij = U,

−Gij · u ≤ 0 ∀i ∼ j

(1)

where p is a collection of nonnegative interaction pressures that ensure the
non-overlapping constraint.

For any individual i, the first equation writes

ui = Ui −
∑

i∼j

pij eij.

The last term encodes how the desired velocity of i is modified

B. Maury Congested transport

A granular (purely selfish) model (with J. Venel) 
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We consider a collection of desired velocities

U = (U1, . . . , UN ).

In the simplest setting (asocial and interchangeable individuals), each Ui de-
pends on the position of i only. In the latter case we have that Ui = U0(qi),
where U0 is the desired velocity fields which is shared by all individuals.
More complex models can be elaborated by writing U = U(q), which ex-
presses that the desired velocity of an individual depends upon their posi-
tion, but also upon the position of others.

The cone of feasible velocities associated to a configuration q is then

Cq = {v , Dij(q) = 0 ⇒ eij · (vj − vi) ≥ 0}
= {v , Dij(q) = 0 ⇒ Gij · v ≥ 0} . (4.3)

where

Gij = ∇Dij(q) = (0, . . . , 0,−eij, 0, . . . , 0, eij , 0, . . . , 0) ∈ R
2N

is the gradient of the distance from i to j. Note that Gij ∈ R2N has
only 4 non-zero components, which correspond to the degrees of freedom of
individuals i and j. The model expresses the fact that the effective velocity
is the closest to the desired one among all feasible velocities, i.e.

dq

dt
= PCqU(q), (4.4)

where PCq is the euclidean projection on Cq, defined by (4.3).

Saddle-point formulation

The projection problem (4.5) consists in minimizing

J(v) =
1

2
|v − U |2 , (4.5)

of the set Cq of feasible velocities. The constraint can be written in matrix
form:

Cq =
{

v ∈ R
2N , Bv ≤ 0

}

,

where each row of B expresses a non-overlapping contraint between two
disc which are in contact in the current configuration. More precisely, for
two entities i and j in contact, one defines the center-to-center unit vector
(see Fig. 4.3)

eij =
qj − qi
|qj − qi|

,
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Fig. 4.3: Notation

and the corresponding row is

Gij = (0, . . . , 0,−eij, 0, . . . , 0, eij, 0, . . . , 0) ∈ R
2N .

Proposition 4.2. Minimizing J (defined by (4.6)) over Cq (defined
by (4.3)) is equivalent to the following saddle point formulation:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ui −
∑

i∼j

pij Gij = Ui,

−Gij · u ≤ 0 ∀i ∼ j,

p ≥ 0,

Gij · u > 0 =⇒ pij = 0.

(4.6)

Proof. This is a direct consequence of Proposition A.4, page 117.

The previous problem can be written as a discrete version of a Darcy
problem, by introducing the matrix B which implements the constraints on
the velocity:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u+B⋆p = U,

Bu ≤ 0,

p ≥ 0,

p · Bu = 0.

(4.7)

4.3 Numerical scheme

We are interested here in approximating solution to (4.5). The scheme we
propose is based on a very simple idea, which was introduced in the context
of granular flows [Maury (2006)]. Consider a feasible configuration q ∈ K ⊂
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dq

dt
2 �@( (q) + IK(q))

Congested

transport

B. Maury Well-posedness / numerical illustrations

Catching-up (or projection) algorithm :

∣∣∣∣∣
q̃k+1
τ = qk

τ + τU(qk
τ ),

qk+1
τ = PK q̃k+1

τ ,

The interpolated trajectory can be shown to converge to a solution of the problem
(B.M. & J. Venel, 2011).

Gradient flow framework : in the case where U = −∇D, we introduce the

dissatisfaction function

Ψ(q) =
∑

i

D(qi) + IK(q).

The process can then be written

dq

dt
∈ −∂Ψ(q).

The crowd is a point in R
2N that follows the steepest descent path with respect to Ψ.

Illustrations : Evacuation of a room, Evacuation of a room with obstacles

B. Maury Congested transport
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Moreau’s framework

The approach proposed in [Moreau (1977)] makes it possible to give a
sound framework to the crowd evolution problem. In this seminal paper,
Moreau considered the so-called sweeping process, a point in a Hilbert space
is subject to remain within a moving convex set t !→ K(t), while moving
as little as possible. The approach relies on a time discretization process,
called catching up algorithm. Let τ > 0 be the time step. We denote by
qk an approximation of the position at time kτ . Successive approximations
are built by projecting the current position to the convex set at the next
time step:

qk+1 = PK((k+1)τ)

(

qk
)

.

The notion of subdifferential, which generalizes the notion of gradient for
non-smooth convex function makes it possible to express te projection in
the form of an inclusion. For any convex function Ψ : H !→ R ∪ {+∞},
one defines

∂Ψ(q) = {v, Ψ(q) + v · h ≤ Ψ(q + h) ∀h} . (4.10)

In the case where Ψ is the indicatrix function IK of a closed convex set K:

IK(q) =

∣
∣
∣
∣

0 if q ∈ K
+∞ if q /∈ K

(4.11)

it holds that (it is the straightforward consequence on the characterization
of the projection on a closed convex set)

∂IK(q) = {q′ − q , q = PK (q′)} .

Fig. 4.4 represents this outward normal cone in various situations: for in-
terior points it reduces to {0}; it is empty for points which lie outside of
K; for any point on te boundary of K, it corresponds to the outward nor-
mal half line in the smooth case, and to a nontrivial close convex cone for
angular extremal points Thus, the fact that qk+1 is the projection of qk on
K can be expressed

qk+1 − qk

τ
∈ −∂IK((k+1)τ (q

k+1).

The latter can be interpreted as the (implicit) time discretization of the
inclusion

dq

dt
∈ −∂IK(t)(q).

N.B. The model is 1-positively homogeneous
No FiS can be reproduced by simply increasing the speed

A granular (purely selfish) model (with J. Venel) 



A granular (purely selfish) model (with J. Venel) 

Ambiguous role of « desired velocities », actually closer to individual
forces in highly crowded situations

Static jam
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Congested

transport

B. Maury Well-posedness / numerical illustrations

Catching-up (or projection) algorithm :

∣∣∣∣∣
q̃k+1
τ = qk

τ + τU(qk
τ ),

qk+1
τ = PK q̃k+1

τ ,

The interpolated trajectory can be shown to converge to a solution of the problem
(B.M. & J. Venel, 2011).

Gradient flow framework : in the case where U = −∇D, we introduce the

dissatisfaction function

Ψ(q) =
∑

i

D(qi) + IK(q).

The process can then be written

dq

dt
∈ −∂Ψ(q).

The crowd is a point in R
2N that follows the steepest descent path with respect to Ψ.

Illustrations : Evacuation of a room, Evacuation of a room with obstacles

B. Maury Congested transport

Individual dissatisfaction
(distance to the exit) 

Non overlapping
constraint
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Moreau’s framework

The approach proposed in [Moreau (1977)] makes it possible to give a
sound framework to the crowd evolution problem. In this seminal paper,
Moreau considered the so-called sweeping process, a point in a Hilbert space
is subject to remain within a moving convex set t !→ K(t), while moving
as little as possible. The approach relies on a time discretization process,
called catching up algorithm. Let τ > 0 be the time step. We denote by
qk an approximation of the position at time kτ . Successive approximations
are built by projecting the current position to the convex set at the next
time step:

qk+1 = PK((k+1)τ)

(

qk
)

.

The notion of subdifferential, which generalizes the notion of gradient for
non-smooth convex function makes it possible to express te projection in
the form of an inclusion. For any convex function Ψ : H !→ R ∪ {+∞},
one defines

∂Ψ(q) = {v, Ψ(q) + v · h ≤ Ψ(q + h) ∀h} . (4.10)

In the case where Ψ is the indicatrix function IK of a closed convex set K:

IK(q) =

∣
∣
∣
∣

0 if q ∈ K
+∞ if q /∈ K

(4.11)

it holds that (it is the straightforward consequence on the characterization
of the projection on a closed convex set)

∂IK(q) = {q′ − q , q = PK (q′)} .

Fig. 4.4 represents this outward normal cone in various situations: for in-
terior points it reduces to {0}; it is empty for points which lie outside of
K; for any point on te boundary of K, it corresponds to the outward nor-
mal half line in the smooth case, and to a nontrivial close convex cone for
angular extremal points Thus, the fact that qk+1 is the projection of qk on
K can be expressed

qk+1 − qk

τ
∈ −∂IK((k+1)τ (q

k+1).

The latter can be interpreted as the (implicit) time discretization of the
inclusion

dq

dt
∈ −∂IK(t)(q).

dq

dt
2 �@ (q)

May 9, 2018 19:19 ws-book9x6 Crowds in Equations wsFMbook page 67

Granular models 67

and Cq is the set of feasible velocities defined by (4.3). In spite of its ap-
parent simplicity, this problem raises delicate issues from the theoretical
standpoint.

Moreau’s framework

The approach proposed in [Moreau (1977)] makes it possible to give a
sound framework to the crowd evolution problem. In this seminal paper,
Moreau considered the so-called sweeping process, a point in a Hilbert space
is subject to remain within a moving convex set t !→ K(t), while moving
as little as possible. The approach relies on a time discretization process,
called catching up algorithm. Let τ > 0 be the time step. We denote by
qk an approximation of the position at time kτ . Successive approximations
are built by projecting the current position to the convex set at the next
time step:

qk+1 = PK((k+1)τ)

(

qk
)

.

The notion of subdifferential, which generalizes the notion of gradient for
non-smooth convex function makes it possible to express the projection in
the form of an inclusion. For any convex function Ψ : H !→ R ∪ {+∞},
one defines

∂Ψ(q) = {v, Ψ(q) + v · h ≤ Ψ(q + h) ∀h} . (4.14)

In the case where Ψ is the indicatrix function IK of a closed convex set K:

IK(q) =

∣
∣
∣
∣

0 if q ∈ K
+∞ if q /∈ K

(4.15)

it holds that (it is a straightforward consequence of the characterization
of the projection on a closed convex set)

∂IK(q) = {q′ − q , q = PK (q′)} .

Fig. 4.5 represents this outward normal cone in various situations: for
interior points it reduces to {0}; it is empty for points which lie outside
of K; for any point on the boundary of K, it corresponds to the outward
normal half line in the smooth case, and to a non-trivial close convex cone
for angular extremal points. The fact that qk+1 is the projection of qk on
K can be expressed

qk+1 − qk

τ
∈ −∂IK((k+1)τ)(q

k+1).
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Histogram of « forces » (relatively to individual forces)



Effect of an obstacle upon inter individual forces
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Speeding up evacuation 
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B. Maury Further illustrations

Evacuation of a room with 5 obstacles : micro and macro.

RER Gare du Nord : micro and macro

FLUIDIFICATION STRATEGIES

Dissatisfaction function

Ψ(q) =
N∑

i=1

βiD(qi) + IK(q)

Static jam

Civilized behaviour : Fluidification of the jam

B. Maury Congested transport

: weight that i attributes to its own importance in the global dissatisfaction

One considers that when an individual cannot go forward because of someone upfront, 
they lower their        
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Faster is Slower Effect in crowd motion modeling



Metastability / stability of jams 

For a regular function

At a critical point

Critical point
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(r (q̄) = 0)

Stable equilibrium for the gradient flow (left), eigenvalues of H are > 0
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Unstable equilibrium for the gradient flow (right), eigenvalues of H are of different signs
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 (q̄ + h) =  (q̄) + hHh|hi+ o(|h|2)



Metastability / stability of jams 

Here: the function is highly non regular 

Hessian-like matrix for a non smooth function

Overlapping penalty term
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Moreau’s framework

The approach proposed in [Moreau (1977)] makes it possible to give a
sound framework to the crowd evolution problem. In this seminal paper,
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Fig. 10. Global dissatisfaction Φ (and mean frustration F ) vs. time

leads to a static solution, and thereby an infinite evacuation time. We showed that
this phenomenon corresponds to very special, namely hyperstatic, configurations.
They systematically occur when the door is smaller than twice the people diameter,
almost never when the relative width of the door is larger than 2.7, and occasionally
when the door width lies in between. Increasing desired velocity (frustrated people
tend to push further) is likely to overstabilize these jams, whereas a decrease of
some desired velocity can help the overall crowd to exit the attraction bassin of the
local minimum, thereby resuming the evacuation process (Slower is Faster effect),
as shown in section 5.

In situations where static jams do not occur, the crowd (represented by the
vector q) sometimes passes in the neighborhood of unstable jam configurations,
that corresponds to saddle-points for the functional Ψ. When this happens, the
evacuation process is significantly slowed down, until q escapes from this saddle-
point neighborhood by slipping along unstable directions (corresponding to negative
eigenvalues of the Hessian matrix). This allows to reproduce Stop-and-Go waves
with a minimal set of assumptions, and in particular without assuming any change
in individual strategies.



Each individual tends to realized their desired velocity, accounting for the 
non-overlapping contraint, given the other individual’s velocities

Ii

Nash-spirit approach

Individual « sees » neighbors in

Influence graph

(with F. Al Reda)



Individual « sees » neighbors in

Influence graph

Ii
q. This graph is built as follows: the nodes of the graph are the individuals, and an oriented
edge i→ j exists if and only if j ∈ Ii .
Considering a feasible configuration q ∈ K, we shall call equilibrated a velocity field

u(q) = (u1, . . . , uN) such that the velocity of each individual approaches best his desired
velocity among all velocities that he considers as feasible, given the positions and velocities
of neighbors who influence him. The fact that constraints on an individual depend on others’
velocities does not properly define a velocity field, but rather leads to define a set (possibly
empty) of velocities that are compatible with those requirements.
More precisely, we shall denote by Λ the set of all those velocity fields u = (u1, . . . , uN)

such that

ui = argmin
w∈Ci(q,u−i)

1

2
|w − Ui|

2, ∀i = 1, . . . , N (1)

where

Ci(q, u−i) =
{

w ∈ Rd, ∀j ∈ Ii, Dij(q) = 0⇒ eij(q) · (w − uj) ≤ 0
}

, (2)

with the usual notation u−i = (u1, . . . , ui−1, ui+1, . . . , uN) and eij(q) = (qj − qi)/|qj − qi|.

qi
qjDij

eij

−eij

R

R

Figure 1: Notation

Let us start with some preliminary remarks on this definition.

1. As we shall see, Nash equilibria are not unique in general, even existence is not always
guaranteed. We discuss the existence and uniqueness of solutions in Section 3.

2. In the case where the influence graph is not complete (some individuals may have
neighbors that do not influence them), equilibrated velocities may not be feasible in
the sense that they would lead to overlapping of discs. More precisely, they may not
belong to the set

C(q) =
{

v = (v1, . . . , vN) ∈ RdN , ∀j ̸= i, Dij(q) = 0⇒ eij(q) · (vi − vj) ≤ 0
}

. (3)

We focus now on the study of the general Nash equilibrium model. We start by investi-
gating some examples to illustrate the previous remarks.
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Figure 6: Desired velocities on top-left, velocities resulting from the decision process on top-
right, projection of the desired velocities according to the granular model on bottom-left and
projection of the decision based velocities according to the granular model on bottom-right.

5 Comparison between modeling results and empirical

data

We propose now to compare the behavior of individuals for the hierarchical model based on
cones of vision and the granular model in evacuation cases, and confront the results with
real evacuation experiments described in [18, 17, 40]. The comparison is based on the study
of time lapses between consecutive egresses, which gives an information about the flux, and
the total evacuation times. We are especially interested in four comparison tests described
along this section: the alternation between short and long time lapses, the distribution of
large time lapses, the Faster is Slower effect and the effect of an obstacle.
The first set of experiments involved in the comparison are evacuation drills done by

Garcimartin et al. [18, 17]. During these experiments, a total of 85 participants are asked to
exit a room through a door of length 75cm. Two runs are done. In the first run, individuals
are asked to exit the room as fast as they could while trying to avoid physical contact
with others and pushing is banned (low competitiveness). In the second run, individuals
are asked to do the same but they are allowed to push each other while evacuating (high
competitiveness), excluding violent shoving. The main goal of these experiments is to test
the evidence of the Faster is Slower effect experimentally. The presence of this effect was

17
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B. Maury Macroscopic setting

The crowd is described by a density ρ.

Desired velocity U = U(x)

The density is transported by the actual velocity u :

∂ρ
∂t

+∇ · (ρu) = 0.

Soft handling of the congestion :

u = β(ρ)U, with e.g. β(ρ) = 1 − ρ (Hughes 02’, Dolak et al. 05’, Perthame et al
09’, in the context of chemotactic motion)

Nonlinear diffusion : additional term −∇ · D(ρ)∇ρ, with D(ρ) = (1 − ρ)−α,

α > 0 (Choi & Wang 10’, Degond et al. 10’).

B. Maury Congested transport

Spontaneous velocity

Feasible densities

Macroscopic setting
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6.1 One dimensional microscopic traffic model

The Follow the Leader model presented in Section 2.1 has a direct
macroscopic counterpart, which is called LWR model (from [Lighthill and
Whitham (1955)] and [ Richards (1956)]). It was initially meant to model
car traffic, but its relevance for crowds of people walking one behind another
is obvious. It is based on the one-dimensional version of Equation (6.2),
with an advection velocity written as a function of the local density:

∂tρt + ∂xρtut(ρt(x)) = 0. (6.2)

6.2 Granular models: hard handling of the congestion con-
straint

Chapter 4 presents microscopic models based on a hard-sphere description
of individuals, i.e. subject to a strict non-overlapping constraint. At the
macroscopic level, such a description can be written by imposing the density
to remain below a threshold value, which we shall set to 1 for simplicity.

Macroscopic granular model

The core ingredient, like in the microscopic case, is the field of desired
velocity U . Since the description is eulerian, we shall limit ourselves to
the case of interchangeable persons in terms of behavior: the field U =
U(x) depends on the position only. In the case of the evacuation of a
room, we shall identify the latter to a domain Ω of R2, this fields points
toward an exit, and thus tends to concentrate people. We assume that the
total “mass” of people is 1, so that, for any t, ρt belongs to P(Ω), the
set of probability measures over Ω. The set of feasible densities is then
(since we deal with measures that are absolutely continuous with respect
to the Lebesgue measure, we shall identify the measure and the associated
density):

K = {ρ ∈ P(Ω) , 0 ≤ ρ ≤ 1 a.e.} . (6.3)

The macroscopic counterpart of the microscopic granular model of Chap-
ter 4 is obtained by considering that the actual velocity of the crowd it the
closest (in a L2 sense) to the desired velocity U , among all feasible veloc-
ities. Informally, feasible velocities are such that the density should not
be increased on zones where it already saturates the constraints, i.e. the
divergence must be nonnegative on the saturated zone (where ρ = 1). This
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property can be formalized in a dual way, by introducing the set of feasible
velocities as

Cρ =

{

v ∈ L2
ρ(Ω) ,

∫

Ω
v ·∇p ≤ 0 ∀p ∈ H1

ρ , p ≥ 0 a.e.

}

where the set H1
ρ of pressure test functions is defined by

H1
ρ =

{

p ∈ H1(Ω) , p(1− ρ) = 0 a.e.
}

.

The macroscopic problem (macroscopic counterpart of (4.4)) simply
writes

∣
∣
∣
∣
∣
∣

∂ρ

∂t
+∇ · (ρu) = 0

u = PCρU,
(6.4)

where the continuity equation is meant in a weak sense, and the projection
on Cq corresponds to the L2 norm.

Macroscopic granular model : mathematical issues

Since the mapping ρ '→ u(ρ) = PCρU is nonsmooth and nonlocal, this prob-
lem raises delicate issues from the theoretical standpoint. We shall restrict
ourselves here to a short description of the adapted mathematical frame-
work, and refer to [Maury et al. (2011)] for further details. The main idea
consists in transposing the microscopic framework at the macroscopic level.
The microscopic description is natively lagrangian (the unknown xi(t), ui(t)
are associated to a moving individual i), whereas the macroscopic one is
eulerian: t '→ ρt(x) describes the evolution of the density at some point x
which is fixed. Standard tools to analyse Partial Differential Equations are
based on a eulerian standpoint, in particular distances between functions
are estimated by considering some integral norm of their difference, or the
derivative of their difference. This eulerian character rules out the possi-
bility to adapt strategies like the Catching-up algorithm (see Eq. (4.12)).
The framework of Optimal transportation makes it possible to recover a
partly lagrangian description of measures. This framework is based on the
so-called Wassertein distance, which can be defined on the space of prob-
ability measures P(Ω. Let t : Ω −→ Ω be a measurable mapping, and
µ ∈ P(Ω) a probability measure. We say that t pushes forward µ onto ν
(written t#µ = ν) if

µ
(

t−1(A)
)

= ν(A)

October 3, 2017 15:36 ws-book9x6 Modelling & Simulation of Crowd Motions wsFMbook page 75

Toward macroscopic models 75

property can be formalized in a dual way, by introducing the set of feasible
velocities as

Cρ =

{

v ∈ L2
ρ(Ω) ,

∫

Ω
v ·∇p ≤ 0 ∀p ∈ H1

ρ , p ≥ 0 a.e.

}

where the set H1
ρ of pressure test functions is defined by

H1
ρ =

{

p ∈ H1(Ω) , p(1− ρ) = 0 a.e.
}

.

The macroscopic problem (macroscopic counterpart of (4.4)) simply
writes

∣
∣
∣
∣
∣
∣

∂ρ

∂t
+∇ · (ρu) = 0

u = PCρU,
(6.4)

where the continuity equation is meant in a weak sense, and the projection
on Cq corresponds to the L2 norm.

Macroscopic granular model : mathematical issues

Since the mapping ρ '→ u(ρ) = PCρU is nonsmooth and nonlocal, this prob-
lem raises delicate issues from the theoretical standpoint. We shall restrict
ourselves here to a short description of the adapted mathematical frame-
work, and refer to [Maury et al. (2011)] for further details. The main idea
consists in transposing the microscopic framework at the macroscopic level.
The microscopic description is natively lagrangian (the unknown xi(t), ui(t)
are associated to a moving individual i), whereas the macroscopic one is
eulerian: t '→ ρt(x) describes the evolution of the density at some point x
which is fixed. Standard tools to analyse Partial Differential Equations are
based on a eulerian standpoint, in particular distances between functions
are estimated by considering some integral norm of their difference, or the
derivative of their difference. This eulerian character rules out the possi-
bility to adapt strategies like the Catching-up algorithm (see Eq. (4.12)).
The framework of Optimal transportation makes it possible to recover a
partly lagrangian description of measures. This framework is based on the
so-called Wassertein distance, which can be defined on the space of prob-
ability measures P(Ω. Let t : Ω −→ Ω be a measurable mapping, and
µ ∈ P(Ω) a probability measure. We say that t pushes forward µ onto ν
(written t#µ = ν) if

µ
(

t−1(A)
)

= ν(A)

Cone of feasible velocities : nonnegative divergence wherever 
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Macroscopic granular model

The core ingredient, like in the microscopic case, is the field of desired
velocity U . Since the description is eulerian, we shall limit ourselves to
the case of interchangeable persons in terms of behavior: the field U =
U(x) depends on the position only. In the case of the evacuation of a
room, we shall identify the latter to a domain Ω of R2, this fields points
toward an exit, and thus tends to concentrate people. We assume that the
total “mass” of people is 1, so that, for any t, ρt belongs to P(Ω), the
set of probability measures over Ω. The set of feasible densities is then
(since we deal with measures that are absolutely continuous with respect
to the Lebesgue measure, we shall identify the measure and the associated
density):

K = {ρ ∈ P(Ω) , 0 ≤ ρ ≤ 1 a.e.} . (6.3)

The macroscopic counterpart of the microscopic granular model of Chap-
ter 4 is obtained by considering that the actual velocity of the crowd it the
closest (in a L2 sense) to the desired velocity U , among all feasible veloc-
ities. Informally, feasible velocities are such that the density should not
be increased on zones where it already saturates the constraints, i.e. the
divergence must be nonnegative on the saturated zone (where ρ = 1). This
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property can be formalized in a dual way, by introducing the set of feasible
velocities as

Cρ =

{

v ∈ L2
ρ(Ω) ,

∫

Ω
v ·∇p ≤ 0 ∀p ∈ H1

ρ , p ≥ 0 a.e.

}

where the set H1
ρ of pressure test functions is defined by

H1
ρ =

{

p ∈ H1(Ω) , p(1− ρ) = 0 a.e.
}

.

The macroscopic problem (macroscopic counterpart of (4.4)) simply
writes

∣
∣
∣
∣
∣
∣

∂ρ

∂t
+∇ · (ρu) = 0

u = PCρU,
(6.4)

where the continuity equation is meant in a weak sense, and the projection
on Cq corresponds to the L2 norm.

Macroscopic granular model : mathematical issues

Since the mapping ρ '→ u(ρ) = PCρU is nonsmooth and nonlocal, this prob-
lem raises delicate issues from the theoretical standpoint. We shall restrict
ourselves here to a short description of the adapted mathematical frame-
work, and refer to [Maury et al. (2011)] for further details. The main idea
consists in transposing the microscopic framework at the macroscopic level.
The microscopic description is natively lagrangian (the unknown xi(t), ui(t)
are associated to a moving individual i), whereas the macroscopic one is
eulerian: t '→ ρt(x) describes the evolution of the density at some point x
which is fixed. Standard tools to analyse Partial Differential Equations are
based on a eulerian standpoint, in particular distances between functions
are estimated by considering some integral norm of their difference, or the
derivative of their difference. This eulerian character rules out the possi-
bility to adapt strategies like the Catching-up algorithm (see Eq. (4.12)).
The framework of Optimal transportation makes it possible to recover a
partly lagrangian description of measures. This framework is based on the
so-called Wassertein distance, which can be defined on the space of prob-
ability measures P(Ω. Let t : Ω −→ Ω be a measurable mapping, and
µ ∈ P(Ω) a probability measure. We say that t pushes forward µ onto ν
(written t#µ = ν) if

µ
(

t−1(A)
)

= ν(A)
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where the set H1
ρ of pressure test functions is defined as

H1
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p ∈ H1(Ω) , p(1− ρ) = 0 a.e.

}
.

The macroscopic problem (macroscopic counterpart of (2.1)) simply writes

∣∣∣∣∣

∂ρ

∂t
+∇ · (ρu) = 0

u = PCq
U,

(2.7)

where the continuity equation is meant in a weak sense (see e.g. [23]), and the
projection on Cq corresponds to the L2 norm. The formal similarity with the mi-
croscopic approach is underlined by the saddle-point formulation of the projection
problem. Let us define the essential saturated zone as the largest open set ω ⊂ Ω
such that ρ(x) = 1 for a.e. x ∈ ω. The projection problem takes the form: Find
(u, p) ∈ L2(ω)×H1

0 (ω) such that

∣∣∣∣∣∣∣∣∣∣∣

u+∇p = U in ω,

−∇ · u ≤ 0 in ω,

p ≥ 0 in ω,
∫

ω
u ·∇p = 0,

(2.8)

that is the macroscopic counterpart of system (2.5). It takes the form of a Darcy
problem, that is commonly used to describe the flow of an incompressible fluid in
a porous medium (see e.g. [4]). The latter problem provides the effective velocity
in ω only. The overall velocity u is obtained by extending u|ω with U (the actual
velocity is obviously the desired one outside the saturated zone).

Proposition 2.1. Problem (2.8) has a unique solution (u, p) ∈ L2(ω)2 ×H1
0 (ω).

Proof. This is a straightforward consequence on the fact that the operator

B̂ : v ∈ L2(ω)2 (−→ −∇ · u ∈ H−1(ω) ,
〈
B̂v, p

〉
=

∫
v ·∇p,

is surjective, thanks to Poincaré inequality in H1
0 (Ω), so that B̂⋆ is one-to-one and

has closed range. As a consequence, the polar cone to the set of feasible velocities
Cq can be written

C◦
q =

{
w ∈ L2(ω)2 ,

∫

Ω
w · v ≤ 0 ∀v ∈ Cq

}
=

{
∇p , p ∈ H1

0 (ω) , p ≥ 0
}
,

hence the existence and uniqueness of a saddle-point (u, p).

Whether this macroscopic model could be properly obtained through a micro-
macro limit from the first will be addressed, and in some way answered, in a
negative way in Section 4.

Unilateral Darcy problem : 

October 3, 2017 15:36 ws-book9x6 Modelling & Simulation of Crowd Motions wsFMbook page 75

Toward macroscopic models 75

property can be formalized in a dual way, by introducing the set of feasible
velocities as

Cρ =

{

v ∈ L2
ρ(Ω) ,

∫

Ω
v ·∇p ≤ 0 ∀p ∈ H1

ρ , p ≥ 0 a.e.

}

where the set H1
ρ of pressure test functions is defined by

H1
ρ =

{

p ∈ H1(Ω) , p(1− ρ) = 0 a.e.
}

.

The macroscopic problem (macroscopic counterpart of (4.4)) simply
writes

∣
∣
∣
∣
∣
∣

∂ρ

∂t
+∇ · (ρu) = 0

u = PCρU,
(6.4)

where the continuity equation is meant in a weak sense, and the projection
on Cq corresponds to the L2 norm.

Macroscopic granular model : mathematical issues

Since the mapping ρ '→ u(ρ) = PCρU is nonsmooth and nonlocal, this prob-
lem raises delicate issues from the theoretical standpoint. We shall restrict
ourselves here to a short description of the adapted mathematical frame-
work, and refer to [Maury et al. (2011)] for further details. The main idea
consists in transposing the microscopic framework at the macroscopic level.
The microscopic description is natively lagrangian (the unknown xi(t), ui(t)
are associated to a moving individual i), whereas the macroscopic one is
eulerian: t '→ ρt(x) describes the evolution of the density at some point x
which is fixed. Standard tools to analyse Partial Differential Equations are
based on a eulerian standpoint, in particular distances between functions
are estimated by considering some integral norm of their difference, or the
derivative of their difference. This eulerian character rules out the possi-
bility to adapt strategies like the Catching-up algorithm (see Eq. (4.12)).
The framework of Optimal transportation makes it possible to recover a
partly lagrangian description of measures. This framework is based on the
so-called Wassertein distance, which can be defined on the space of prob-
ability measures P(Ω. Let t : Ω −→ Ω be a measurable mapping, and
µ ∈ P(Ω) a probability measure. We say that t pushes forward µ onto ν
(written t#µ = ν) if

µ
(

t−1(A)
)

= ν(A)



Evacuation of a room 

4 B. Maury

where the set H1
ρ of pressure test functions is defined as

H1
ρ =

{
p ∈ H1(Ω) , p(1− ρ) = 0 a.e.

}
.

The macroscopic problem (macroscopic counterpart of (2.1)) simply writes

∣∣∣∣∣

∂ρ

∂t
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where the continuity equation is meant in a weak sense (see e.g. [23]), and the
projection on Cq corresponds to the L2 norm. The formal similarity with the mi-
croscopic approach is underlined by the saddle-point formulation of the projection
problem. Let us define the essential saturated zone as the largest open set ω ⊂ Ω
such that ρ(x) = 1 for a.e. x ∈ ω. The projection problem takes the form: Find
(u, p) ∈ L2(ω)×H1

0 (ω) such that
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u+∇p = U in ω,

−∇ · u ≤ 0 in ω,

p ≥ 0 in ω,
∫

ω
u ·∇p = 0,

(2.8)

that is the macroscopic counterpart of system (2.5). It takes the form of a Darcy
problem, that is commonly used to describe the flow of an incompressible fluid in
a porous medium (see e.g. [4]). The latter problem provides the effective velocity
in ω only. The overall velocity u is obtained by extending u|ω with U (the actual
velocity is obviously the desired one outside the saturated zone).

Proposition 2.1. Problem (2.8) has a unique solution (u, p) ∈ L2(ω)2 ×H1
0 (ω).

Proof. This is a straightforward consequence on the fact that the operator

B̂ : v ∈ L2(ω)2 (−→ −∇ · u ∈ H−1(ω) ,
〈
B̂v, p

〉
=

∫
v ·∇p,

is surjective, thanks to Poincaré inequality in H1
0 (Ω), so that B̂⋆ is one-to-one and

has closed range. As a consequence, the polar cone to the set of feasible velocities
Cq can be written

C◦
q =

{
w ∈ L2(ω)2 ,

∫

Ω
w · v ≤ 0 ∀v ∈ Cq

}
=

{
∇p , p ∈ H1

0 (ω) , p ≥ 0
}
,

hence the existence and uniqueness of a saddle-point (u, p).

Whether this macroscopic model could be properly obtained through a micro-
macro limit from the first will be addressed, and in some way answered, in a
negative way in Section 4.
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matrix, then kerB⋆ ∩ R
Nc

+ = {0}.

Proof. Let p be such that B⋆p = 0, with p ≥ 0. Consider a connected sub-cluster
of q (a connected maximal subset of discs in contact), like the one represented
in Fig. 2d. We denote by J the corresponding set of indices. Consider now the
convex-hull of centers (qi)i∈J , and pick one qi that is an extremal point of the
convex hull. By Hahn Banach’s Theorem, qi can be separated from the convex
hull of the remaing centers, by an hyperplane normal to some vector w. Now write
the force balance for qi along direction w:

∑

j∼i

pijeji · w = 0.

By construction eji ·w > 0 for all j in contact with i, so that all pressures involving
i are equal to zero. Applying the same approach recursively makes it possible to
eliminate extremal points one after the other, thus the pressure is identically 0.

Proposition 4.2. Let q ∈ K and U ∈ R2N be given, u = PCq
U . Then the solution

set for pressure, i.e. the set Λ of all those pressure fields p ∈ R
Nc
+ such that (u, p)

is a solution to (2.5), is bounded.

Proof. The solution set writes

Λ =
{
p ∈ R

Nc , B⋆p = U − u , p ≥ 0
}
.

If a sequence (pn) of pressures in Λ goes to infinity, then, up to a subsequence,
pn/ |pn| converges to p ∈ kerB⋆ ∩ R

Nc

+ , that is necessarily 0.

Discrete Laplacian. The previous remarks explain a difference in the behaviour
of the two models, that is highly significant if one considers evacuation processes.
In the macroscopic setting, the congested zone upstream the exit has the typical
shape represented in Fig. 4 (left). The congested zone is denoted by ω, and the
desired velocity field points toward the exit, and verifies ∇ · U < 0. The pressure
field is then solution of a Poisson problem

−∆p = −∇ · U > 0, (4.2)
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The evolution model is then written

∂ρ
∂t

+∇ · (ρu) = 0,

u = PCρU.

where u is the solution to the Darcy-like problem
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−∇ · u ≤ 0,

p ≥ 0,
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Proof. Let p be such that B⋆p = 0, with p ≥ 0. Consider a connected sub-cluster
of q (a connected maximal subset of discs in contact), like the one represented
in Fig. 2d. We denote by J the corresponding set of indices. Consider now the
convex-hull of centers (qi)i∈J , and pick one qi that is an extremal point of the
convex hull. By Hahn Banach’s Theorem, qi can be separated from the convex
hull of the remaing centers, by an hyperplane normal to some vector w. Now write
the force balance for qi along direction w:

∑

j∼i

pijeji · w = 0.

By construction eji ·w > 0 for all j in contact with i, so that all pressures involving
i are equal to zero. Applying the same approach recursively makes it possible to
eliminate extremal points one after the other, thus the pressure is identically 0.

Proposition 4.2. Let q ∈ K and U ∈ R2N be given, u = PCq
U . Then the solution

set for pressure, i.e. the set Λ of all those pressure fields p ∈ R
Nc
+ such that (u, p)

is a solution to (2.5), is bounded.

Proof. The solution set writes

Λ =
{
p ∈ R

Nc , B⋆p = U − u , p ≥ 0
}
.

If a sequence (pn) of pressures in Λ goes to infinity, then, up to a subsequence,
pn/ |pn| converges to p ∈ kerB⋆ ∩ R

Nc

+ , that is necessarily 0.

Discrete Laplacian. The previous remarks explain a difference in the behaviour
of the two models, that is highly significant if one considers evacuation processes.
In the macroscopic setting, the congested zone upstream the exit has the typical
shape represented in Fig. 4 (left). The congested zone is denoted by ω, and the
desired velocity field points toward the exit, and verifies ∇ · U < 0. The pressure
field is then solution of a Poisson problem

−∆p = −∇ · U > 0, (4.2)
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that is the macroscopic counterpart of system (2.5). It takes the form of a Darcy
problem, that is commonly used to describe the flow of an incompressible fluid in
a porous medium (see e.g. [4]). The latter problem provides the effective velocity
in ω only. The overall velocity u is obtained by extending u|ω with U (the actual
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hence the existence and uniqueness of a saddle-point (u, p).

Whether this macroscopic model could be properly obtained through a micro-
macro limit from the first will be addressed, and in some way answered, in a
negative way in Section 4.
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Discrete Laplacian. The previous remarks explain a difference in the behaviour
of the two models, that is highly significant if one considers evacuation processes.
In the macroscopic setting, the congested zone upstream the exit has the typical
shape represented in Fig. 4 (left). The congested zone is denoted by ω, and the
desired velocity field points toward the exit, and verifies ∇ · U < 0. The pressure
field is then solution of a Poisson problem
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By construction eji ·w > 0 for all j in contact with i, so that all pressures involving
i are equal to zero. Applying the same approach recursively makes it possible to
eliminate extremal points one after the other, thus the pressure is identically 0.

Proposition 4.2. Let q ∈ K and U ∈ R2N be given, u = PCq
U . Then the solution

set for pressure, i.e. the set Λ of all those pressure fields p ∈ R
Nc
+ such that (u, p)

is a solution to (2.5), is bounded.

Proof. The solution set writes

Λ =
{
p ∈ R

Nc , B⋆p = U − u , p ≥ 0
}
.

If a sequence (pn) of pressures in Λ goes to infinity, then, up to a subsequence,
pn/ |pn| converges to p ∈ kerB⋆ ∩ R

Nc

+ , that is necessarily 0.

Discrete Laplacian. The previous remarks explain a difference in the behaviour
of the two models, that is highly significant if one considers evacuation processes.
In the macroscopic setting, the congested zone upstream the exit has the typical
shape represented in Fig. 4 (left). The congested zone is denoted by ω, and the
desired velocity field points toward the exit, and verifies ∇ · U < 0. The pressure
field is then solution of a Poisson problem

−∆p = −∇ · U > 0, (4.2)
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Now, by the maximum principle, since the right-hand side is positive
the pressure p is nonnegative. As a consequence, it holds that ∂p/∂n ≤ 0,
so that, on Γout,

u · n = U · n−∇p · n = U · n− ∂p

∂n
≥ U · n.

In other words, people on the boundary exit fasterthan they would if they
were alone (i.e. walking at their desired velocity). This can be explained by
recalling that the model has a mechanical nature. In particular, pressures
implement interaction forces which obey the Law of Action-reaction. In
evacuation situations, it leads to people in the head being pushed from
behind, thus accelerated. This model therefore exhibits some sort of anti-
Capacity Drop phenomena (see Section 8.7, page 97).

. . . nor Faster is Slower effect

Let us now formalize and investigate the Faster is Slower issue, i.e. may
a reduction of some individual desired velocities lead to a quicker evacu-
ation ? We consider again the situation represented by Fig. 6.1, with a
desired velocity field U which points toward the exit. The question can be
formalized by introducing a speed correction field β(x), and the associated
velocity field β(x)U(x). The pressure pβ associated to this desired velocity
is the solution to the Poisson problem

−∆pβ = −∇ · βU > 0,

with homogeneous Dirichlet boundary conditions pβ = 0 on Γout and Γup,
and homogeneous Neuman boundary conditions ∂p/∂n = 0 on Γw. The
associated flux through the exit is thus

J(β) =

∫

Γout

uβ · n =

∫

Γout

U · n−
∫

Γout

∂pβ
∂n

. (6.8)

The question is then: at the unmodified situation β ≡ 1, are there positive
perturbations of β (i.e. people tend to go faster) which lead to a decrease
of the flux J ? The next proposition gives a precise answer to this question.
We assume that desired velocities are not modified at the boundary Γout,
i.e. β = 1.

Proposition 6.1. Let β &→ J(β) the flux functional defined by (6.8). The
gradient of J , that is the function g such that

J(β + h) = J(β) +

∫

Ω
gh+ o(h),

p = 0

p = 0

Faster is slower effect ? 
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is U · q, where q is the solution to the adjoint problem
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−∆q = 0 in Ω,
q = 1 on Γout

q = 0 on Γup

∂q

∂n
= 0 on Γw

(6.9)

Proof. Although the introduction of a Lagrangian, and its associated ad-
joint problem, is not strictly necessary here, we shall follow this strategy,
which can be generalized to many situations. We first introduce a dual
variable q, that is a function defined in Ω, which makes it possible to ex-
press the relation between the control variable β and the state variable p.
For any such q (assumed to be smooth), from (6.7), we have that

∫

Ω
∇p ·∇q −

∫

Γ

∂p

∂n
q +

∫

Ω
q∇ · βU = 0. (6.10)

Now, since we assume that desired velocities are not modified at the exit,
and since we are interested in variations of the flux only, we may drop the
first term of (6.8) in the definition of J :

J(β) = −
∫

Γout

∂pβ
∂n

.

We introduce the Lagrangian of the problem, that is the sum of J(β) and
the weak expression (6.10) of the state equation:

L(p,β, q) = −
∫

Γout

∂pβ
∂n

+

∫

Ω
∇p ·∇q −

∫

Γ

∂p

∂n
q +

∫

Ω
q∇ · βU = 0.

Since pβ is a solution to the state equation, for any β, and any q, we have
that

L(pβ,β, q) = J(β).

We differentiate with respect to β both sides of this identity:

DβLJ = DpL ◦Dβpβ +DβL.

The approach consists in choosing an adjoint variable q such that DpL = 0,
which circumvents the difficulty1 to explicitly estimate Dβpβ

XX demo par estimation du gradient du flux de sortie.
1As already mention, in the present situation, an explicit estimate of Dβpβ would have

been possible, due to the linear character of the mapping.
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and since we are interested in variations of the flux only, we may drop the
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q +

∫

Ω
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Since pβ is a solution to the state equation, for any β, and any q, we have
that

L(pβ,β, q) = J(β).

We differentiate with respect to β both sides of this identity:

DβJ = DpL ◦Dβpβ +DβL.

The approach consists in choosing an adjoint variable q such that DpL = 0,
which circumvents the difficulty1 to explicitly estimate Dβpβ We have that

DpL

XXXX

XX demo par estimation du gradient du flux de sortie.
1As already mention, in the present situation, an explicit estimate of Dβpβ would have

been possible, due to the linear character of the mapping.

The gradient of J is 
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Now, by the maximum principle, since the right-hand side is positive
the pressure p is nonnegative. As a consequence, it holds that ∂p/∂n ≤ 0,
so that, on Γout,

u · n = U · n−∇p · n = U · n− ∂p

∂n
≥ U · n.

In other words, people on the boundary exit fasterthan they would if they
were alone (i.e. walking at their desired velocity). This can be explained by
recalling that the model has a mechanical nature. In particular, pressures
implement interaction forces which obey the Law of Action-reaction. In
evacuation situations, it leads to people in the head being pushed from
behind, thus accelerated. This model therefore exhibits some sort of anti-
Capacity Drop phenomena (see Section 8.7, page 97).

. . . nor Faster is Slower effect

Let us now formalize and investigate the Faster is Slower issue, i.e. may
a reduction of some individual desired velocities lead to a quicker evacu-
ation ? We consider again the situation represented by Fig. 6.1, with a
desired velocity field U which points toward the exit. The question can be
formalized by introducing a speed correction field β(x), and the associated
velocity field β(x)U(x). The pressure pβ associated to this desired velocity
is the solution to the Poisson problem

−∆pβ = −∇ · βU > 0,

with homogeneous Dirichlet boundary conditions pβ = 0 on Γout and Γup,
and homogeneous Neuman boundary conditions ∂p/∂n = 0 on Γw. The
associated flux through the exit is thus

J(β) =

∫

Γout

uβ · n =

∫

Γout

U · n−
∫

Γout

∂pβ
∂n

. (6.8)

The question is then: at the unmodified situation β ≡ 1, are there positive
perturbations of β (i.e. people tend to go faster) which lead to a decrease
of the flux J ? The next proposition gives a precise answer to this question.
We assume that desired velocities are not modified at the boundary Γout,
i.e. β = 1.

Proposition 6.1. Let β &→ J(β) the flux functional defined by (6.8). The
gradient of J , that is the function g such that

J(β + h) = J(β) +

∫

Ω
gh+ o(h),

correction factor

where  q solves the adjoint problem : 
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We consider a collection of desired velocities

U = (U1, . . . , UN ).

In the simplest setting (asocial and interchangeable individuals), each Ui de-
pends on the position of i only. In the latter case we have that Ui = U0(xi),
where U0 is the desired velocity fields which is shared by all individuals.
More complex models can be elaborated by writing U = U(x), which ex-
presses that the desired velocity of an individual depends upon their posi-
tion, but also upon the position of others.

The cone of feasible velocities associated to a configuration x is then

Cx = {v , Dij(x) = |xj − xi|− 2r = 0 ⇒ Gij · v ≥ 0} . (4.3)

where

Gij = ∇Dij(x) = (0, . . . , 0,−eij, 0, . . . , 0, eij, 0, . . . , 0) ∈ R
2N

is the gradient of the distance from i to j. Note that Gij ∈ R2N has
only 4 non-zero components, which correspond to the degrees of freedom of
individuals i and j. The model expresses the fact that the effective velocity
is the closest to the desired one among all feasible velocities, i.e.

dx

dt
= PCxU(x), (4.4)

where PCx is the euclidean projection on Cx, defined by (4.3).

Saddle-point formulation

The projection problem (4.4) consists in minimizing

J(v) =
1

2
|v − U |2 , (4.5)

of the set Cx of feasible velocities. The constraint can be written in matrix
form:

Cx =
{

v ∈ R
2N , Bv ≤ 0

}

,

where each row of B expresses a non-overlapping contraint between two
disc which are in contact in the current configuration. More precisely, for
two entities i and j in contact, one defines the center-to-center unit vector
(see Fig. 4.3)

eij =
xj − xi

|xj − xi|
,
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is the gradient of the distance from i to j. Note that Gij ∈ R2N has
only 4 non-zero components, which correspond to the degrees of freedom of
individuals i and j. The model expresses the fact that the effective velocity
is the closest to the desired one among all feasible velocities, i.e.

dx

dt
= PCxU(x), (4.4)

where PCx is the euclidean projection on Cx, defined by (4.3).

Saddle-point formulation

The projection problem (4.4) consists in minimizing

J(v) =
1

2
|v − U |2 , (4.5)

of the set Cx of feasible velocities. The constraint can be written in matrix
form:

Cx =
{

v ∈ R
2N , Bv ≤ 0

}

,

where each row of B expresses a non-overlapping contraint between two
disc which are in contact in the current configuration. More precisely, for
two entities i and j in contact, one defines the center-to-center unit vector
(see Fig. 4.3)

eij =
xj − xi

|xj − xi|
,

Constraint when i and j are in contact Gij · u � 0
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r

eij−eij
xj

xi Dij

Fig. 4.3: Notation

and the corresponding row is

Gij = (0, . . . , 0,−eij, 0, . . . , 0, eij, 0, . . . , 0) ∈ R
2N .

Proposition 4.2. Minimizing J (defined by (4.5)) over Cx (defined
by (4.3)) is equivalent to the following saddle point formulation:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u−
∑

i∼j

pij Gij = U,

−Gij · u ≤ 0 ∀i ∼ j,

p ≥ 0,

Gij · u > 0 =⇒ pij = 0.

(4.6)

Proof. This is a direct consequence of Proposition A.4, page 115.

4.3 Numerical scheme

We are interested here in approximating solution to (4.4). The scheme we
propose is based on a very simple idea, which was introduced in the context
of granular flows [Maury (2006)]. Consider a feasible configuration x ∈
K ⊂ R2N (where K is defined by (4.2)), and a time step τ > 0. Applying to
this configuration a velocity field v during τ yields the configuration x+τv.
The idea consists in replacing the admissibility of the new configuration,
which reads

Dij(x + τv) ≥ 0 ∀i, j , i ̸= j,

by first order expansions of those non-overlapping constraints, i.e.

Dij(x) + τ∇Dij(x) · v ≥ 0 ∀i, j , i ̸= j.
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4.3 Numerical scheme

We are interested here in approximating solution to (4.4). The scheme we
propose is based on a very simple idea, which was introduced in the context
of granular flows [Maury (2006)]. Consider a feasible configuration x ∈
K ⊂ R2N (where K is defined by (4.2)), and a time step τ > 0. Applying to
this configuration a velocity field v during τ yields the configuration x+τv.
The idea consists in replacing the admissibility of the new configuration,
which reads

Dij(x + τv) ≥ 0 ∀i, j , i ̸= j,

by first order expansions of those non-overlapping constraints, i.e.

Dij(x) + τ∇Dij(x) · v ≥ 0 ∀i, j , i ̸= j.

4 B. Maury

where the set H1
ρ of pressure test functions is defined as

H1
ρ =

{
p ∈ H1(Ω) , p(1− ρ) = 0 a.e.

}
.

The macroscopic problem (macroscopic counterpart of (2.1)) simply writes

∣∣∣∣∣

∂ρ

∂t
+∇ · (ρu) = 0

u = PCq
U,

(2.7)

where the continuity equation is meant in a weak sense (see e.g. [23]), and the
projection on Cq corresponds to the L2 norm. The formal similarity with the mi-
croscopic approach is underlined by the saddle-point formulation of the projection
problem. Let us define the essential saturated zone as the largest open set ω ⊂ Ω
such that ρ(x) = 1 for a.e. x ∈ ω. The projection problem takes the form: Find
(u, p) ∈ L2(ω)×H1

0 (ω) such that

∣∣∣∣∣∣∣∣∣∣∣

u+∇p = U in ω,

−∇ · u ≤ 0 in ω,

p ≥ 0 in ω,
∫

ω
u ·∇p = 0,

(2.8)

that is the macroscopic counterpart of system (2.5). It takes the form of a Darcy
problem, that is commonly used to describe the flow of an incompressible fluid in
a porous medium (see e.g. [4]). The latter problem provides the effective velocity
in ω only. The overall velocity u is obtained by extending u|ω with U (the actual
velocity is obviously the desired one outside the saturated zone).

Proposition 2.1. Problem (2.8) has a unique solution (u, p) ∈ L2(ω)2 ×H1
0 (ω).

Proof. This is a straightforward consequence on the fact that the operator

B̂ : v ∈ L2(ω)2 (−→ −∇ · u ∈ H−1(ω) ,
〈
B̂v, p

〉
=

∫
v ·∇p,

is surjective, thanks to Poincaré inequality in H1
0 (Ω), so that B̂⋆ is one-to-one and

has closed range. As a consequence, the polar cone to the set of feasible velocities
Cq can be written

C◦
q =

{
w ∈ L2(ω)2 ,

∫

Ω
w · v ≤ 0 ∀v ∈ Cq

}
=

{
∇p , p ∈ H1

0 (ω) , p ≥ 0
}
,

hence the existence and uniqueness of a saddle-point (u, p).

Whether this macroscopic model could be properly obtained through a micro-
macro limit from the first will be addressed, and in some way answered, in a
negative way in Section 4.

September 26, 2017 22:55 ws-book9x6 Modelling & Simulation of Crowd Motions wsFMbook page 49

Granular models 49

r
r

eij−eij
xj

xi Dij

Fig. 4.3: Notation

and the corresponding row is

Gij = (0, . . . , 0,−eij, 0, . . . , 0, eij, 0, . . . , 0) ∈ R
2N .

Proposition 4.2. Minimizing J (defined by (4.5)) over Cx (defined
by (4.3)) is equivalent to the following saddle point formulation:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ui −
∑

i∼j

pij Gij = Ui,

−Gij · u ≤ 0 ∀i ∼ j,

p ≥ 0,

Gij · u > 0 =⇒ pij = 0.

(4.6)

Proof. This is a direct consequence of Proposition A.4, page 115.

The previous problem can be written as a discrete version of a Darcy
problem, by introducing the matrix B which implements the constraints on
the velocity:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u+B⋆p = U,

Bu ≤ 0,

p ≥ 0,

p · Bu = 0.

(4.7)

4.3 Numerical scheme

We are interested here in approximating solution to (4.4). The scheme we
propose is based on a very simple idea, which was introduced in the context
of granular flows [Maury (2006)]. Consider a feasible configuration x ∈

Micro Macro



Discrete Poisson problem

10 B. Maury

Figure 3. Primal and dual networks

matrix, then kerB⋆ ∩ R
Nc

+ = {0}.

Proof. Let p be such that B⋆p = 0, with p ≥ 0. Consider a connected sub-cluster
of q (a connected maximal subset of discs in contact), like the one represented
in Fig. 2d. We denote by J the corresponding set of indices. Consider now the
convex-hull of centers (qi)i∈J , and pick one qi that is an extremal point of the
convex hull. By Hahn Banach’s Theorem, qi can be separated from the convex
hull of the remaing centers, by an hyperplane normal to some vector w. Now write
the force balance for qi along direction w:

∑

j∼i

pijeji · w = 0.

By construction eji ·w > 0 for all j in contact with i, so that all pressures involving
i are equal to zero. Applying the same approach recursively makes it possible to
eliminate extremal points one after the other, thus the pressure is identically 0.

Proposition 4.2. Let q ∈ K and U ∈ R2N be given, u = PCq
U . Then the solution

set for pressure, i.e. the set Λ of all those pressure fields p ∈ R
Nc
+ such that (u, p)

is a solution to (2.5), is bounded.

Proof. The solution set writes

Λ =
{
p ∈ R

Nc , B⋆p = U − u , p ≥ 0
}
.

If a sequence (pn) of pressures in Λ goes to infinity, then, up to a subsequence,
pn/ |pn| converges to p ∈ kerB⋆ ∩ R

Nc

+ , that is necessarily 0.

Discrete Laplacian. The previous remarks explain a difference in the behaviour
of the two models, that is highly significant if one considers evacuation processes.
In the macroscopic setting, the congested zone upstream the exit has the typical
shape represented in Fig. 4 (left). The congested zone is denoted by ω, and the
desired velocity field points toward the exit, and verifies ∇ · U < 0. The pressure
field is then solution of a Poisson problem

−∆p = −∇ · U > 0, (4.2)

Discrete
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We consider that each individual tends to follow a desired velocity Ui (pos-
sibly varying in time), so that U = (U1, . . . , UN) is the global desired veloc-
ity. We aim at preserving the non-overlapping constraint, which amounts
to prescribe a non-negative relative velocity for segments in contact. We

x1 x2 xN

2r

Fig. 4.1: One-dimensional setting

accordingly define the set of feasible velocities as

Cx =
{

v = (v1, . . . , vN ) ∈ R
N , xn+1 − xn = 2r =⇒ vn+1 − vn ≥ 0

}

.

Model 4.1. The one-dimensional granular model reads

dx

dt
= PCx (U) .

Saddle-point formulation

Let us consider a fully congested situation : each individual is in contact
with his neighbors, i.e. x2 − x1 = 2r, x3 − x2 = 2r, etc . . . .

Projecting U on Cx amounts to minimize

J(v) =
1

2

∑

|vi − Ui| 2

over the set Cx of feasible velocities, which can be written

Cx =
{

v = (v1, . . . , vN ) ∈ R
N Bv ≤ 0

}

,

where B is the (N − 1)×N matrix

B =

⎛

⎜
⎜
⎝

1 −1 0 · · 0
0 1 −1 · · ·
· · · · · 0
· · · · 1 −1

⎞

⎟
⎟
⎠

. (4.1)

This problem fits in the assumptions of Proposition A.4, page 115: there
exists p ∈ R

N−1
+ such that

{

∇J(u) +B⋆p = 0

Bu ≤ 0.

avec β = ∆tV/(2∆x), de la façon suivante

beta = 0.5*V*dt/dx

ones = np.ones(J)

aux = [ones,beta*ones[:-1],-beta*ones[:-1],-beta*ones[0],beta*ones[0]]

Adv1d = ssp.diags(aux,[0,1,-1,(J-1),-(J-1)],format=’csr’)

Le calcul du nouveau champ à partir du précédent peut alors se faire à l’aide de la fonction
spsolve du package scipy.sparse.linalg :

uu =sla.spsolve(Adv1d,uu)

N.B. Le format csr 95 spécifié lors de l’assemblage permet une utilisation optimale de
solve.

Assemblage des matrices du Laplacien en dimension d ≥ 2

En dimension 1 la matrice du Laplacien discret avec conditions de Dirichlet (valeur im-
posée à 0 aux extrémités) s’écrit

A1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −1 0 · · 0

−1 2 −1 0 · ·

0 −1 · · ·

· · · · ·

· · 2 −1

0 · · 0 −1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

En dimension 2 d’espace, le Laplacien discret agit sur les valeurs au point (i∆x, j∆x) de la
discrétisation comme suit

4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1.

On peut vérifier que la matrice associée peut s’écrire

A2 = A1 ⊗ I1 + I1 ⊗ A1,

où I1 est la matrice identité d’ordre le nombre de point dans chaque direction, et ⊕ est le
produit de Kronecker défini de la façon suivante : si A ∈ Mpq et Brs sont deux matrices, la
matrice C = A ⊗ B est de taille (pr, qs) a une structure (p, q) par blocs, chaque bloc étant de
taille (r, s), égale au produit de aij par la matrice B. On obtient de façon analogue la matrice
du Laplacien 2d pour des conditions aux limites de Neuman, ou des conditions périodiques.

En Python, si A et B sont des matrices creuses, ce produit de Kronecker s’écrit

C = ssp.kron(A,B)

95. Voir http://perso.univ-perp.fr/langlois/images/pdf/mp/scipy.pdf
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In other words, there is a collection of non-negative pressures pn,n+1, for
n = 1, . . . , N − 1, such that, for any two persons n and n+ 1 in contact

un = Un + pn−1,n − pn,n+1.

The Lagrange multipliers can therefore be interpreted as interaction forces
between people in contact, and the actual velocity of n is his desired velocity
corrected by the net action of his neighbors, pn−1,n − pn,n+1.

Let us consider the following extreme, yet illustrative, situation: N
individuals in a row tend to go leftward with the same velocity −U < 0,
with a wall located at 0 (see Fig. 4.2). The solution is obviously static:

....

....

1 2 3 N

Fig. 4.2: Heading straight into the wall (hard setting)

all actual velocities are 0, which is made possible by positive pressures
p0,1, p1,2, . . . , PN−1,N , where p01 corresponds to the action of the wall
on individual 1. A straightforward computation exhibits a hydrostatic like
pressure field:

pN−1,N = U , pN−2,N−1 = 2U , . . . , p0,1 = NU.

This example illustrates an important feature of highly congested crowds:
the action of individuals sum up to create high interaction forces. In the
present case, individual 1 is crushed with an intensity that grows to +∞
with the number of people behind him.

4.2 Two-dimensional model

We represent individuals as rigid discs of common radius r. The position
vector is

x = (x1, x2, . . . , xN ) ∈ R
2N .

The set of feasible configurations (no overlapping) is defined as

K =
{

x ∈ R
2N , Dij = |xj − xi|− 2r ≥ 0 ∀i ̸= j

}

. (4.2)

In 1d : 

In higher dimensions : a bit different

BB?p = BU

Continuous

Crowd

motion

B. Maury
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Hard,
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Hard

micro

Hard
macro

Cell

growth

Soft Hard, basics Hard micro Hard macro Cell growth

MICRO-MACRO ISSUES

B plays the role of a discrete (non-isotropic) divergence.

For 1D problems : BB⋆ is exactly the discrete Laplacian.

In higher dimensions : depends on the local structure
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u = B⋆p
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εu3

εd12
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Fig. 4.7: Geometric representation of p !−→ −B⋆p

Fig. 4.8: Primal (left) and dual (right) networks

In other words, there may exist pressure fields p such that BB⋆ ≥ 0 (i.e. the
pressure tends to increase all distances), whereas some individual pressure
are negative (attractive forces between some individuals)

Gradient flow framework

Under some assumptions on the desired velocity field, Problem (4.4) takes
the form of a gradient flow. In other words, the configuration evolves along
the steepest descent direction with respect to some potential. In all gen-
erality, this structure stems from the following assumption: The desired
velocity field

U = (U1, U2, . . . , UN )

Remark : « Standard » laplacian on the primal network

uij = �cij(pj � pi)

pj

pi

Ohm /  Poiseuille / Fick law

Kirchhoff law
X

j⇠i

uij = 0

X

j⇠i

cij(pi � pj) = 0Discrete harmonicity 

Maximum principle

u = �krp

Macroscopic

r · u = 0

�r · krp = 0



Here : non-standard laplacian on the dual network
September 22, 2017 9:56 ws-book9x6 Modelling & Simulation of Crowd Motions wsFMbook page 55

Granular models 55

1

2

3

p12

p23

p = (p12, p23)

1

2

3

p12

p23

u = B⋆p

u1

u2

u3

1

2

3

εu1

εu2

εu3

εd12

εd23

Fig. 4.7: Geometric representation of p !−→ −B⋆p

expresses a constraint of the type

−Gij · v ≤ 0,

where Gij is the gradient of Dij = |xj − xi| − ri − rj with respect to
x = (x1, . . . , xN ). Consider a collection p of dual variables. The mapping
p !→ −B⋆p realizes the action of those interaction forces on the primal
network, where the native degrees of freedom (positions of disc centers)
are defined. Fig. 4.7 represents this mapping in the case of 3 grains and
two contacts. In the case of a structured situation (for instance a cartesian
network, or a triangular one like in Fig. 4.9), a uniform pressure field has
a zero discrete gradient on interior points2. Yet, in the general case
(when the local granular arrangement does not present any symmetry),
this property is ruled out. For example in the situation represented in
Fig. 4.6, one may straightforwardly check that the sum of unit vectors
pointing inward each of the two grains in contact is not zero. The bi-
dimensional case presents another feature. Consider the cluster represente
on Fig. 4.9. The number of discs is 14, thus the number of degrees of
freedom is 28, and the number of active contacts (dimension of the dual
space) is 29. As a consequence, the kernel of B⋆ ∈ M29,28(R) is non-trivial:
there exists a non-zero pressure field which induces a zero resultant force on
2 On recovers the discrete version of the fact that a constant function has a zero gradient.

p 7�! BB?p
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Fig. 4.8: Primal (left) and dual (right) networks

In other words, there may exist pressure fields p such that BB⋆ ≥ 0 (i.e. the
pressure tends to increase all distances), whereas some individual pressure
are negative (attractive forces between some individuals)

Gradient flow framework

Under some assumptions on the desired velocity field, Problem (4.4) takes
the form of a gradient flow. In other words, the configuration evolves along
the steepest descent direction with respect to some potential. In all gen-
erality, this structure stems from the following assumption: The desired
velocity field

U = (U1, U2, . . . , UN )

Pressures defined at edges (i.e. contact points)



i

j

k

Figure 3.2 – Stencil non structuré

Figure 3.3 – Réseaux primal (gauche) et dual (droite)

Considérons une configuration q ∈ K (voir figure 3.2), et la matrice associée B, dont
chaque ligne exprime une contrainte du type

−Gij · u ≤ 0,

où Gij est le gradient de la distance Dij = |qj − qi| − ri − rj par rapport à q = (q1, . . . , qN ).
L’opérateur discret B⋆ a été identifié dans le cas de la dimension 1 à un gradient discret.
Considérons dans le cas présent une collection p de multiplicateurs de Lagrange. L’opération
−B⋆ réalise l’action de ces forces d’interaction sur le réseau primal de degré de liberté associés
aux centres des particules. dans le cas d’une configuration structurée, (par exemple réseau
cartésien, ou réseau triangulaire comme représenté sur la figure 3.4) un champ de pression p
uniforme est de gradient discret nul sur les points intérieurs au réseau 21. Cependant, dans le
cas général, (quand l’arrangement des disques ne présente pas de symétrie particulière), cette
propriété est invalidée. Par exemple dans le cas de la figure 3.2 on vérifiera immédiatement
que la somme des vecteurs unitaires pointant vers l’intérieur de chacun des deux grains en
gras n’est pas nulle. Le cas bidimensionnel non structuré présente une autre particularité.
Considérer le cluster représenté sur la figure 3.4. Le nombre de disques est 14, donc le nombre

21. On retrouve ici la version discrète d’annulation du gradient d’une fonction constante. Plus précisément,
pour comprendre la présence d’une résultante non nulle au bord, on peut penser, dans le cas continu, au gradient
faible d’une fonction caractéristique d’un domaine borné. Son gradient est effectivement nul à l’intérieur, nul à
l’intérieur de l’extérieur, mais il s’identifie globalement à une distribution vectorielle de simple couche supportée
par la frontière de l’ensemble.

45

The matrix is not diagonally dominant in general 
+ some extra diagonal terms are positive



Consequence : no maximum principle

BB?p = BU > 0 does not imply p > 0

-

+

+

+

+



Static jams



Faster is slower effect in the microscopic situation ? 

speed correction factors

where  q solves the adjoint problem : 

� = (�i)i

BB?p� = B(� � U)

J(�) = �B?p · ni

ni

The gradient of J is U �B?q

BB?q = Bni

+ +- -

No reason for J to be positive: some individuals may accelerate the egress of
the blue guy by reducing their speed 
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Fig. 4.11: Congested evacuation

Fig. 4.12: Faster is Slower effect
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Fig. 4.13: Illustration of Bni
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Fig. 4.12: Faster is Slower effect
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Fig. 4.13: Illustration of Bni

Red  : FiF persons 
Blue : FiS persons
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To Sum up

Parameter-less  hard-sphere model makes  it possible to reproduce FiS effect
« Mathematical » explanation : bad properties of an underlying discrete Laplacian 

Model is frictionless at microscopic model, but the rigid grain approach my be 
considered to model some sort of mesoscopic friction


